Matches in SemOpenAlex for { <https://semopenalex.org/work/W1964968571> ?p ?o ?g. }
- W1964968571 endingPage "1637" @default.
- W1964968571 startingPage "1623" @default.
- W1964968571 abstract "In computer vision, many applications have been formulated as Markov Random Field (MRF) optimization or energy minimization problems. To solve them effectively, numerous algorithms have been developed, including the deterministic and stochastic sampling algorithms. The deterministic algorithms include Graph Cuts, Belief Propagation, and Tree-Reweighted Message Passing while the stochastic sampling algorithms include Simulated Annealing, Markov Chain Monte Carlo (MCMC), and Population-based Markov Chain Monte Carlo (Pop-MCMC). Although many of them produce good results for relatively easy problems, they are still unsatisfactory when it comes to more difficult MRF problems such as non-submodular energy functions, strongly coupled MRFs, and high-order clique potentials. In this paper, we propose a new hybrid algorithm which successfully combines the stochastic sampling and deterministic algorithms to solve such challenging MRF problems. By combining those two different approaches in a unified framework, we can utilize the advantages from both approaches. For example, the deterministic algorithms guide the solution to rapidly move into lower energy state of the solution space. The stochastic sampling algorithms help the solution not to be stuck in local minima and explore larger area. Consequently, the proposed algorithm substantially increases the quality of the solutions. We present a thorough analysis of the algorithm in synthetic MRF problems by controlling the hardness of the problems. We also demonstrate the effectiveness of the proposed algorithm by the experiments on real applications including photomontage and inpainting." @default.
- W1964968571 created "2016-06-24" @default.
- W1964968571 creator A5008717958 @default.
- W1964968571 creator A5046504049 @default.
- W1964968571 date "2011-12-01" @default.
- W1964968571 modified "2023-09-23" @default.
- W1964968571 title "A hybrid approach for MRF optimization problems: Combination of stochastic sampling and deterministic algorithms" @default.
- W1964968571 cites W1498678288 @default.
- W1964968571 cites W1502653686 @default.
- W1964968571 cites W1559345028 @default.
- W1964968571 cites W1781337833 @default.
- W1964968571 cites W1966158039 @default.
- W1964968571 cites W1995875710 @default.
- W1964968571 cites W2001933992 @default.
- W1964968571 cites W2095783300 @default.
- W1964968571 cites W2101309634 @default.
- W1964968571 cites W2103498186 @default.
- W1964968571 cites W2107884096 @default.
- W1964968571 cites W2108619558 @default.
- W1964968571 cites W2111559961 @default.
- W1964968571 cites W2113137767 @default.
- W1964968571 cites W2116877738 @default.
- W1964968571 cites W2120272360 @default.
- W1964968571 cites W2121845348 @default.
- W1964968571 cites W2121927366 @default.
- W1964968571 cites W2126290786 @default.
- W1964968571 cites W2128221187 @default.
- W1964968571 cites W2130184048 @default.
- W1964968571 cites W2131686571 @default.
- W1964968571 cites W2135968022 @default.
- W1964968571 cites W2137117160 @default.
- W1964968571 cites W2142336599 @default.
- W1964968571 cites W2143516773 @default.
- W1964968571 cites W2164918853 @default.
- W1964968571 cites W2169282664 @default.
- W1964968571 cites W2171614029 @default.
- W1964968571 cites W3167728093 @default.
- W1964968571 doi "https://doi.org/10.1016/j.cviu.2011.05.015" @default.
- W1964968571 hasPublicationYear "2011" @default.
- W1964968571 type Work @default.
- W1964968571 sameAs 1964968571 @default.
- W1964968571 citedByCount "6" @default.
- W1964968571 countsByYear W19649685712014 @default.
- W1964968571 countsByYear W19649685712015 @default.
- W1964968571 countsByYear W19649685712016 @default.
- W1964968571 countsByYear W19649685712017 @default.
- W1964968571 crossrefType "journal-article" @default.
- W1964968571 hasAuthorship W1964968571A5008717958 @default.
- W1964968571 hasAuthorship W1964968571A5046504049 @default.
- W1964968571 hasConcept C106131492 @default.
- W1964968571 hasConcept C107673813 @default.
- W1964968571 hasConcept C111350023 @default.
- W1964968571 hasConcept C11413529 @default.
- W1964968571 hasConcept C115961682 @default.
- W1964968571 hasConcept C11727466 @default.
- W1964968571 hasConcept C119857082 @default.
- W1964968571 hasConcept C124504099 @default.
- W1964968571 hasConcept C126255220 @default.
- W1964968571 hasConcept C126980161 @default.
- W1964968571 hasConcept C137836250 @default.
- W1964968571 hasConcept C140779682 @default.
- W1964968571 hasConcept C152948882 @default.
- W1964968571 hasConcept C154945302 @default.
- W1964968571 hasConcept C2778045648 @default.
- W1964968571 hasConcept C31972630 @default.
- W1964968571 hasConcept C33923547 @default.
- W1964968571 hasConcept C41008148 @default.
- W1964968571 hasConcept C57273362 @default.
- W1964968571 hasConcept C75782508 @default.
- W1964968571 hasConcept C89600930 @default.
- W1964968571 hasConcept C98036226 @default.
- W1964968571 hasConcept C98763669 @default.
- W1964968571 hasConceptScore W1964968571C106131492 @default.
- W1964968571 hasConceptScore W1964968571C107673813 @default.
- W1964968571 hasConceptScore W1964968571C111350023 @default.
- W1964968571 hasConceptScore W1964968571C11413529 @default.
- W1964968571 hasConceptScore W1964968571C115961682 @default.
- W1964968571 hasConceptScore W1964968571C11727466 @default.
- W1964968571 hasConceptScore W1964968571C119857082 @default.
- W1964968571 hasConceptScore W1964968571C124504099 @default.
- W1964968571 hasConceptScore W1964968571C126255220 @default.
- W1964968571 hasConceptScore W1964968571C126980161 @default.
- W1964968571 hasConceptScore W1964968571C137836250 @default.
- W1964968571 hasConceptScore W1964968571C140779682 @default.
- W1964968571 hasConceptScore W1964968571C152948882 @default.
- W1964968571 hasConceptScore W1964968571C154945302 @default.
- W1964968571 hasConceptScore W1964968571C2778045648 @default.
- W1964968571 hasConceptScore W1964968571C31972630 @default.
- W1964968571 hasConceptScore W1964968571C33923547 @default.
- W1964968571 hasConceptScore W1964968571C41008148 @default.
- W1964968571 hasConceptScore W1964968571C57273362 @default.
- W1964968571 hasConceptScore W1964968571C75782508 @default.
- W1964968571 hasConceptScore W1964968571C89600930 @default.
- W1964968571 hasConceptScore W1964968571C98036226 @default.
- W1964968571 hasConceptScore W1964968571C98763669 @default.
- W1964968571 hasIssue "12" @default.
- W1964968571 hasLocation W19649685711 @default.
- W1964968571 hasOpenAccess W1964968571 @default.