Matches in SemOpenAlex for { <https://semopenalex.org/work/W1964984893> ?p ?o ?g. }
- W1964984893 endingPage "385" @default.
- W1964984893 startingPage "325" @default.
- W1964984893 abstract "In this paper we study the locomotion of a shape-changing body swimming in a two-dimensional perfect fluid of infinite extent. The shape changes are prescribed as functions of time satisfying constraints ensuring that they result from the work of internal forces only: conditions necessary for the locomotion to be termed self-propelled. The net rigid motion of the body results from the exchange of momentum between these shape changes and the surrounding fluid. The aim of this paper is three-fold. First, it describes a rigorous framework for the study of animal locomotion in fluid. Our model differs from previous ones mostly in that the number of degrees of freedom related to the shape changes is infinite. The Euler–Lagrange equation is obtained by applying the least action principle to the system body fluid. The formalism of Analytic Mechanics provides a simple way to handle the strong coupling between the internal dynamics of the body causing the shape changes and the dynamics of the fluid. The Euler–Lagrange equation takes the form of a coupled system of ordinary differential equations (ODEs) and partial differential equations (PDEs). The existence and uniqueness of solutions for this system are rigorously proved. Second, we are interested in making clear the connection between shape changes and internal forces. Although classical, it can be quite surprising to select the shape changes to play the role of control because the internal forces they are due to seem to be a more natural and realistic choice. We prove that, when the number of degrees of freedom relating to the shape changes is finite, both choices are actually equivalent in the sense that there is a one-to-one relation between shape changes and internal forces. Third, we show how the control problem, consisting in associating with each shape change the resulting trajectory of the swimming body, can be analysed within the framework of geometric control theory. This allows us to take advantage of the powerful tools of differential geometry, such as the notion of Lie brackets or the Orbit Theorem and to obtain the first theoretical result (to our knowledge) of control for a swimming body in an ideal fluid. We derive some interesting and surprising tracking properties: For instance, for any given shape changes producing a net displacement in the fluid (say, moving forward), we prove that other shape changes arbitrarily close to the previous ones exist, which lead to a completely different motion (for instance, moving backward): This phenomenon will be called Moonwalking. Most of our results are illustrated by numerical examples." @default.
- W1964984893 created "2016-06-24" @default.
- W1964984893 creator A5014244809 @default.
- W1964984893 creator A5055723268 @default.
- W1964984893 date "2010-11-17" @default.
- W1964984893 modified "2023-10-14" @default.
- W1964984893 title "Locomotion and Control of a Self-Propelled Shape-Changing Body in a Fluid" @default.
- W1964984893 cites W1499219562 @default.
- W1964984893 cites W1524590822 @default.
- W1964984893 cites W1595765050 @default.
- W1964984893 cites W1964211981 @default.
- W1964984893 cites W1975688214 @default.
- W1964984893 cites W1978101331 @default.
- W1964984893 cites W1980388405 @default.
- W1964984893 cites W1981890426 @default.
- W1964984893 cites W1991725235 @default.
- W1964984893 cites W2008949258 @default.
- W1964984893 cites W2012404765 @default.
- W1964984893 cites W2013038210 @default.
- W1964984893 cites W2015063509 @default.
- W1964984893 cites W2021628287 @default.
- W1964984893 cites W2027639364 @default.
- W1964984893 cites W2053796681 @default.
- W1964984893 cites W2057285417 @default.
- W1964984893 cites W2066520508 @default.
- W1964984893 cites W2086637280 @default.
- W1964984893 cites W2109782501 @default.
- W1964984893 cites W2115463247 @default.
- W1964984893 cites W2142041246 @default.
- W1964984893 cites W2152887332 @default.
- W1964984893 cites W2153595393 @default.
- W1964984893 cites W2153745405 @default.
- W1964984893 cites W2169962265 @default.
- W1964984893 cites W4251786266 @default.
- W1964984893 cites W4297928774 @default.
- W1964984893 doi "https://doi.org/10.1007/s00332-010-9084-8" @default.
- W1964984893 hasPublicationYear "2010" @default.
- W1964984893 type Work @default.
- W1964984893 sameAs 1964984893 @default.
- W1964984893 citedByCount "37" @default.
- W1964984893 countsByYear W19649848932012 @default.
- W1964984893 countsByYear W19649848932013 @default.
- W1964984893 countsByYear W19649848932014 @default.
- W1964984893 countsByYear W19649848932015 @default.
- W1964984893 countsByYear W19649848932016 @default.
- W1964984893 countsByYear W19649848932017 @default.
- W1964984893 countsByYear W19649848932019 @default.
- W1964984893 countsByYear W19649848932020 @default.
- W1964984893 countsByYear W19649848932021 @default.
- W1964984893 crossrefType "journal-article" @default.
- W1964984893 hasAuthorship W1964984893A5014244809 @default.
- W1964984893 hasAuthorship W1964984893A5055723268 @default.
- W1964984893 hasBestOaLocation W19649848932 @default.
- W1964984893 hasConcept C121332964 @default.
- W1964984893 hasConcept C134306372 @default.
- W1964984893 hasConcept C145980571 @default.
- W1964984893 hasConcept C2777021972 @default.
- W1964984893 hasConcept C2780791683 @default.
- W1964984893 hasConcept C33923547 @default.
- W1964984893 hasConcept C34862557 @default.
- W1964984893 hasConcept C51544822 @default.
- W1964984893 hasConcept C62520636 @default.
- W1964984893 hasConcept C74650414 @default.
- W1964984893 hasConcept C78045399 @default.
- W1964984893 hasConcept C93779851 @default.
- W1964984893 hasConceptScore W1964984893C121332964 @default.
- W1964984893 hasConceptScore W1964984893C134306372 @default.
- W1964984893 hasConceptScore W1964984893C145980571 @default.
- W1964984893 hasConceptScore W1964984893C2777021972 @default.
- W1964984893 hasConceptScore W1964984893C2780791683 @default.
- W1964984893 hasConceptScore W1964984893C33923547 @default.
- W1964984893 hasConceptScore W1964984893C34862557 @default.
- W1964984893 hasConceptScore W1964984893C51544822 @default.
- W1964984893 hasConceptScore W1964984893C62520636 @default.
- W1964984893 hasConceptScore W1964984893C74650414 @default.
- W1964984893 hasConceptScore W1964984893C78045399 @default.
- W1964984893 hasConceptScore W1964984893C93779851 @default.
- W1964984893 hasIssue "3" @default.
- W1964984893 hasLocation W19649848931 @default.
- W1964984893 hasLocation W196498489310 @default.
- W1964984893 hasLocation W19649848932 @default.
- W1964984893 hasLocation W19649848933 @default.
- W1964984893 hasLocation W19649848934 @default.
- W1964984893 hasLocation W19649848935 @default.
- W1964984893 hasLocation W19649848936 @default.
- W1964984893 hasLocation W19649848937 @default.
- W1964984893 hasLocation W19649848938 @default.
- W1964984893 hasLocation W19649848939 @default.
- W1964984893 hasOpenAccess W1964984893 @default.
- W1964984893 hasPrimaryLocation W19649848931 @default.
- W1964984893 hasRelatedWork W1543121148 @default.
- W1964984893 hasRelatedWork W2231364979 @default.
- W1964984893 hasRelatedWork W2517973022 @default.
- W1964984893 hasRelatedWork W2618518959 @default.
- W1964984893 hasRelatedWork W3006247779 @default.
- W1964984893 hasRelatedWork W3082668976 @default.
- W1964984893 hasRelatedWork W3093456297 @default.
- W1964984893 hasRelatedWork W4288093367 @default.