Matches in SemOpenAlex for { <https://semopenalex.org/work/W1965086125> ?p ?o ?g. }
- W1965086125 endingPage "21" @default.
- W1965086125 startingPage "1" @default.
- W1965086125 abstract "Abstract Broadly conceived, reliability involves quantifying the consistencies and inconsistencies in observed scores. Generalizability theory, or G theory, is particularly well suited to addressing such matters in that it enables an investigator to quantify and distinguish the sources of inconsistencies in observed scores that arise, or could arise, over replications of a measurement procedure. Classical test theory is an historical predecessor to G theory and, as such, it is sometimes called a parent of G theory. Important characteristics of both theories are considered in this article, but primary emphasis is placed on G theory. In addition, the two theories are briefly compared with item response theory. Notes An earlier version of this paper was presented at the 2008 annual meeting of the American Educational Research Association. The paper was one of two presented in a symposium sponsored by the Buros Center for Testing, the sponsor of this journal. The other paper enumerated the benefits of item response theory. We hope to be able to present this item response theory paper in a future issue of the journal. 1For more complete overviews of CTT see CitationLord and Novick (1968), CitationFeldt and Brennan (1989), and CitationHaertel (2006). For more complete overviews of G theory see CitationCronbach, Gleser, Nanda, and Rajaratnam (1972) and CitationBrennan (1992, Citation2001b). 2Equivalently, for any indefinitely large subpopulation of examinees, the expected value of the errors is 0 provided examinees are not selected based on their observed scores. 3One complexity is that reliability coefficients have nonlinear characteristics. That is why it is much more difficult to raise a reliability coefficient from .90 to .95 than from .50 to .55. 4Classically parallel forms satisfy the assumptions of essential tau-equivalence, but this is not necessarily true for congeneric forms. 5The more familiar estimation formula for Lord's SEM in the mean-score metric is: 6It need not be true that n′ t = n t nor that n′ r = n r ; that is, the sample sizes used to estimate variance components need not equal the sample sizes used in an operational form of the test. 7D study designs can differ with respect to structure and/or sample sizes. 8Strictly speaking, for a random facet it is assumed that the number of conditions in the universe of generalization is indefinitely large. 9That is, the D study design shall be p × T × R with n′ t prompts and n′ r raters. 10The most common “trivial” case is a design and universe with a single random facet. 11CTT deals with sample size changes through the Spearman-Brown formula (see, CitationFeldt & Brennan, 1989 and CitationHaertel, 2006), which does not apply when there is more than one random facet. See CitationBrennan (2001b, pp. 116–117) for an example. 12Averaging inter-rater coefficients does not obviate this problem; it merely masks it. 13It can be argued that stratified alpha (CitationCronbach, Schönemann, & McKie, 1965) is a CTT precursor to multivariate G theory. 14A mixed-model univariate analysis effectively makes a statistical “hidden” choice for the w weights for each fixed level, whereas a multivariate analysis leaves the choice of weights to the investigator. 15If items are considered as congeneric forms, then perhaps this problem can be circumvented (L. S. Feldt, personal communication, March 3, 2010). 16It might be argued that ENR is an expected value over a propensity distribution of performance on the fixed items, but even then, the items (or item parameters) themselves are still fixed. 17Bayesian priors are actually involved in the CitationBriggs and Wilson (2007) and CitationChien (2008) approaches, which employ MCMC methods." @default.
- W1965086125 created "2016-06-24" @default.
- W1965086125 creator A5022657745 @default.
- W1965086125 date "2010-12-30" @default.
- W1965086125 modified "2023-10-09" @default.
- W1965086125 title "Generalizability Theory and Classical Test Theory" @default.
- W1965086125 cites W1971383438 @default.
- W1965086125 cites W1982389807 @default.
- W1965086125 cites W2007816819 @default.
- W1965086125 cites W2013637471 @default.
- W1965086125 cites W2023420063 @default.
- W1965086125 cites W2041713941 @default.
- W1965086125 cites W2053572536 @default.
- W1965086125 cites W2064454539 @default.
- W1965086125 cites W2076818578 @default.
- W1965086125 cites W2078483536 @default.
- W1965086125 cites W2105132495 @default.
- W1965086125 cites W2123478303 @default.
- W1965086125 cites W2145482311 @default.
- W1965086125 cites W2159306398 @default.
- W1965086125 cites W3022130366 @default.
- W1965086125 cites W4231472683 @default.
- W1965086125 cites W4238804190 @default.
- W1965086125 cites W4244225390 @default.
- W1965086125 cites W4253710352 @default.
- W1965086125 doi "https://doi.org/10.1080/08957347.2011.532417" @default.
- W1965086125 hasPublicationYear "2010" @default.
- W1965086125 type Work @default.
- W1965086125 sameAs 1965086125 @default.
- W1965086125 citedByCount "118" @default.
- W1965086125 countsByYear W19650861252012 @default.
- W1965086125 countsByYear W19650861252013 @default.
- W1965086125 countsByYear W19650861252014 @default.
- W1965086125 countsByYear W19650861252015 @default.
- W1965086125 countsByYear W19650861252016 @default.
- W1965086125 countsByYear W19650861252017 @default.
- W1965086125 countsByYear W19650861252018 @default.
- W1965086125 countsByYear W19650861252019 @default.
- W1965086125 countsByYear W19650861252020 @default.
- W1965086125 countsByYear W19650861252021 @default.
- W1965086125 countsByYear W19650861252022 @default.
- W1965086125 countsByYear W19650861252023 @default.
- W1965086125 crossrefType "journal-article" @default.
- W1965086125 hasAuthorship W1965086125A5022657745 @default.
- W1965086125 hasConcept C111472728 @default.
- W1965086125 hasConcept C121332964 @default.
- W1965086125 hasConcept C138496976 @default.
- W1965086125 hasConcept C138885662 @default.
- W1965086125 hasConcept C140390113 @default.
- W1965086125 hasConcept C149782125 @default.
- W1965086125 hasConcept C151730666 @default.
- W1965086125 hasConcept C15744967 @default.
- W1965086125 hasConcept C163258240 @default.
- W1965086125 hasConcept C171606756 @default.
- W1965086125 hasConcept C180747234 @default.
- W1965086125 hasConcept C19875794 @default.
- W1965086125 hasConcept C27158222 @default.
- W1965086125 hasConcept C2777267654 @default.
- W1965086125 hasConcept C33923547 @default.
- W1965086125 hasConcept C41008148 @default.
- W1965086125 hasConcept C43214815 @default.
- W1965086125 hasConcept C62520636 @default.
- W1965086125 hasConcept C74143277 @default.
- W1965086125 hasConcept C86803240 @default.
- W1965086125 hasConceptScore W1965086125C111472728 @default.
- W1965086125 hasConceptScore W1965086125C121332964 @default.
- W1965086125 hasConceptScore W1965086125C138496976 @default.
- W1965086125 hasConceptScore W1965086125C138885662 @default.
- W1965086125 hasConceptScore W1965086125C140390113 @default.
- W1965086125 hasConceptScore W1965086125C149782125 @default.
- W1965086125 hasConceptScore W1965086125C151730666 @default.
- W1965086125 hasConceptScore W1965086125C15744967 @default.
- W1965086125 hasConceptScore W1965086125C163258240 @default.
- W1965086125 hasConceptScore W1965086125C171606756 @default.
- W1965086125 hasConceptScore W1965086125C180747234 @default.
- W1965086125 hasConceptScore W1965086125C19875794 @default.
- W1965086125 hasConceptScore W1965086125C27158222 @default.
- W1965086125 hasConceptScore W1965086125C2777267654 @default.
- W1965086125 hasConceptScore W1965086125C33923547 @default.
- W1965086125 hasConceptScore W1965086125C41008148 @default.
- W1965086125 hasConceptScore W1965086125C43214815 @default.
- W1965086125 hasConceptScore W1965086125C62520636 @default.
- W1965086125 hasConceptScore W1965086125C74143277 @default.
- W1965086125 hasConceptScore W1965086125C86803240 @default.
- W1965086125 hasIssue "1" @default.
- W1965086125 hasLocation W19650861251 @default.
- W1965086125 hasOpenAccess W1965086125 @default.
- W1965086125 hasPrimaryLocation W19650861251 @default.
- W1965086125 hasRelatedWork W1965086125 @default.
- W1965086125 hasRelatedWork W2366053398 @default.
- W1965086125 hasRelatedWork W2369801975 @default.
- W1965086125 hasRelatedWork W248316529 @default.
- W1965086125 hasRelatedWork W2561800429 @default.
- W1965086125 hasRelatedWork W2793300950 @default.
- W1965086125 hasRelatedWork W295988166 @default.
- W1965086125 hasRelatedWork W2992540264 @default.
- W1965086125 hasRelatedWork W2114111613 @default.
- W1965086125 hasRelatedWork W2532167955 @default.