Matches in SemOpenAlex for { <https://semopenalex.org/work/W1965214246> ?p ?o ?g. }
- W1965214246 endingPage "223" @default.
- W1965214246 startingPage "223" @default.
- W1965214246 abstract "Whole-genome profiling of gene expression is a powerful tool for identifying cancer-associated genes. Genes differentially expressed between normal and tumorous tissues are usually considered to be cancer associated. We recently demonstrated that the analysis of interindividual variation in gene expression can be useful for identifying cancer associated genes. The goal of this study was to identify the best microarray data–derived predictor of known cancer associated genes. We found that the traditional approach of identifying cancer genes—identifying differentially expressed genes—is not very efficient. The analysis of interindividual variation of gene expression in tumor samples identifies cancer-associated genes more effectively. The results were consistent across 4 major types of cancer: breast, colorectal, lung, and prostate. We used recently reported cancer-associated genes (2011–2012) for validation and found that novel cancer-associated genes can be best identified by elevated variance of the gene expression in tumor samples. The observation that the high interindividual variation of gene expression in tumor tissues is the best predictor of cancer-associated genes is likely a result of tumor heterogeneity on gene level. Computer simulation demonstrates that in the case of heterogeneity, an assessment of variance in tumors provides a better identification of cancer genes than does the comparison of the expression in normal and tumor tissues. Our results thus challenge the current paradigm that comparing the mean expression between normal and tumorous tissues is the best approach to identifying cancer-associated genes; we found that the high interindividual variation in expression is a better approach, and that using variation would improve our chances of identifying cancer-associated genes." @default.
- W1965214246 created "2016-06-24" @default.
- W1965214246 creator A5007160329 @default.
- W1965214246 creator A5008820123 @default.
- W1965214246 creator A5028989565 @default.
- W1965214246 creator A5031124240 @default.
- W1965214246 creator A5031628684 @default.
- W1965214246 creator A5049662911 @default.
- W1965214246 creator A5077624751 @default.
- W1965214246 date "2014-01-01" @default.
- W1965214246 modified "2023-10-11" @default.
- W1965214246 title "How to get the most from microarray data: advice from reverse genomics" @default.
- W1965214246 cites W1967180093 @default.
- W1965214246 cites W1968445925 @default.
- W1965214246 cites W1974177072 @default.
- W1965214246 cites W2007227595 @default.
- W1965214246 cites W2010637767 @default.
- W1965214246 cites W2018340043 @default.
- W1965214246 cites W2033735406 @default.
- W1965214246 cites W2044545697 @default.
- W1965214246 cites W2053935824 @default.
- W1965214246 cites W2063907483 @default.
- W1965214246 cites W2084393930 @default.
- W1965214246 cites W2092315101 @default.
- W1965214246 cites W2095900239 @default.
- W1965214246 cites W2096417401 @default.
- W1965214246 cites W2101039596 @default.
- W1965214246 cites W2102140136 @default.
- W1965214246 cites W2107633226 @default.
- W1965214246 cites W2110280725 @default.
- W1965214246 cites W2110320497 @default.
- W1965214246 cites W2111060309 @default.
- W1965214246 cites W2123329045 @default.
- W1965214246 cites W2123340910 @default.
- W1965214246 cites W2126172213 @default.
- W1965214246 cites W2133542135 @default.
- W1965214246 cites W2138289111 @default.
- W1965214246 cites W2145424370 @default.
- W1965214246 cites W2150649458 @default.
- W1965214246 cites W2403309454 @default.
- W1965214246 cites W2416621186 @default.
- W1965214246 cites W82569036 @default.
- W1965214246 doi "https://doi.org/10.1186/1471-2164-15-223" @default.
- W1965214246 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3997969" @default.
- W1965214246 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24656147" @default.
- W1965214246 hasPublicationYear "2014" @default.
- W1965214246 type Work @default.
- W1965214246 sameAs 1965214246 @default.
- W1965214246 citedByCount "12" @default.
- W1965214246 countsByYear W19652142462015 @default.
- W1965214246 countsByYear W19652142462016 @default.
- W1965214246 countsByYear W19652142462017 @default.
- W1965214246 countsByYear W19652142462018 @default.
- W1965214246 countsByYear W19652142462019 @default.
- W1965214246 countsByYear W19652142462021 @default.
- W1965214246 countsByYear W19652142462022 @default.
- W1965214246 crossrefType "journal-article" @default.
- W1965214246 hasAuthorship W1965214246A5007160329 @default.
- W1965214246 hasAuthorship W1965214246A5008820123 @default.
- W1965214246 hasAuthorship W1965214246A5028989565 @default.
- W1965214246 hasAuthorship W1965214246A5031124240 @default.
- W1965214246 hasAuthorship W1965214246A5031628684 @default.
- W1965214246 hasAuthorship W1965214246A5049662911 @default.
- W1965214246 hasAuthorship W1965214246A5077624751 @default.
- W1965214246 hasBestOaLocation W19652142461 @default.
- W1965214246 hasConcept C104317684 @default.
- W1965214246 hasConcept C121608353 @default.
- W1965214246 hasConcept C141231307 @default.
- W1965214246 hasConcept C150194340 @default.
- W1965214246 hasConcept C18431079 @default.
- W1965214246 hasConcept C186836561 @default.
- W1965214246 hasConcept C189206191 @default.
- W1965214246 hasConcept C2780192828 @default.
- W1965214246 hasConcept C54355233 @default.
- W1965214246 hasConcept C70721500 @default.
- W1965214246 hasConcept C8415881 @default.
- W1965214246 hasConcept C86803240 @default.
- W1965214246 hasConcept C95371953 @default.
- W1965214246 hasConceptScore W1965214246C104317684 @default.
- W1965214246 hasConceptScore W1965214246C121608353 @default.
- W1965214246 hasConceptScore W1965214246C141231307 @default.
- W1965214246 hasConceptScore W1965214246C150194340 @default.
- W1965214246 hasConceptScore W1965214246C18431079 @default.
- W1965214246 hasConceptScore W1965214246C186836561 @default.
- W1965214246 hasConceptScore W1965214246C189206191 @default.
- W1965214246 hasConceptScore W1965214246C2780192828 @default.
- W1965214246 hasConceptScore W1965214246C54355233 @default.
- W1965214246 hasConceptScore W1965214246C70721500 @default.
- W1965214246 hasConceptScore W1965214246C8415881 @default.
- W1965214246 hasConceptScore W1965214246C86803240 @default.
- W1965214246 hasConceptScore W1965214246C95371953 @default.
- W1965214246 hasIssue "1" @default.
- W1965214246 hasLocation W19652142461 @default.
- W1965214246 hasLocation W19652142462 @default.
- W1965214246 hasLocation W19652142463 @default.
- W1965214246 hasLocation W19652142464 @default.
- W1965214246 hasOpenAccess W1965214246 @default.
- W1965214246 hasPrimaryLocation W19652142461 @default.