Matches in SemOpenAlex for { <https://semopenalex.org/work/W1965307173> ?p ?o ?g. }
- W1965307173 abstract "Molecular dynamics simulations were carried out for $mathrm{Pd}ensuremath{-}mathrm{Pt}$, $mathrm{Pd}ensuremath{-}mathrm{Rh}$, and $mathrm{Pd}ensuremath{-}mathrm{Cu}$ nanoclusters supported on a static graphite substrate using the quantum Sutton-Chen potential for the metal-metal interactions. The graphite substrate was represented as layers of fixed carbons sites and modeled with the Lennard-Jones potential model. Metal-graphite interaction potentials obtained by fitting experimental cohesive energies were utilized. Monte Carlo simulations employing the bond order simulation model were used to generate initial configurations. The melting temperatures for bimetallic nanoclusters of varying composition were estimated based on variations in thermodynamic properties such as potential energy and heat capacity. Melting transition temperatures were found to decrease with increasing Cu (for $mathrm{Pd}ensuremath{-}mathrm{Cu}$) and Pd (for $mathrm{Pd}ensuremath{-}mathrm{Pt}$ and $mathrm{Pd}ensuremath{-}mathrm{Rh}$) concentrations and are at least $100phantom{rule{0.3em}{0ex}}text{to}phantom{rule{0.3em}{0ex}}200phantom{rule{0.3em}{0ex}}mathrm{K}$ higher than those of the same-sized free clusters. Density distributions perpendicular to the surface and components of the velocity autocorrelation functions in the plane of the surface indicate that one of the metals in the bimetallic nanoclusters wets the graphite surface more, and that this weak graphite substrate is able to structure the melted fluid in the first few monolayers. The wetting characteristics are dictated by the delicate balance between metal-metal and metal-graphite interactions. Components of velocity-autocorrelation functions characterizing diffusion of constituent atoms in these bimetallics suggest greater out-of-plane movement, which increases with Cu (for $mathrm{Pd}ensuremath{-}mathrm{Cu}$) and Pd (for $mathrm{Pd}ensuremath{-}mathrm{Rh}$ and $mathrm{Pd}ensuremath{-}mathrm{Pt}$) concentrations. Deformation parameters showed that the core (Pd in $mathrm{Pd}ensuremath{-}mathrm{Cu}$, Rh in $mathrm{Pd}ensuremath{-}mathrm{Rh}$ and Pt in $mathrm{Pd}ensuremath{-}mathrm{Pt}$) atoms diffuse out and the surface-segregated (Cu in $mathrm{Pd}ensuremath{-}mathrm{Cu}$, Pd in $mathrm{Pd}ensuremath{-}mathrm{Rh}$ and $mathrm{Pd}ensuremath{-}mathrm{Pt}$) atoms diffuse into the nanoclusters upon melting. Near linear dependence of melting temperature on composition was found for unsupported clusters in our recent work, which results from the balance between the extent of surface melting and the radius of remaining solid core. Nonlinear dependence was found in these supported clusters, as a result of reduced surface melting at higher Pd concentrations, due to the substrate effect. Shell-based diffusion coefficients for layers perpendicular to the graphite substrate suggest surface melting to start from the cluster surface experiencing least influence of the graphite field. Surface melting was seen in all three nanoclusters, with calculated bond orientational order parameters revealing the order of $mathrm{Pd}ensuremath{-}mathrm{Cu}>mathrm{Pd}ensuremath{-}mathrm{Pt}>mathrm{Pd}ensuremath{-}mathrm{Rh}$, for onset of melting. Cluster snapshots on the graphite substrate and calculated cluster diffusion coefficients indicate these nanoclusters to diffuse as single entities with very high diffusivities, consistent with experimental observations." @default.
- W1965307173 created "2016-06-24" @default.
- W1965307173 creator A5010369187 @default.
- W1965307173 creator A5049657915 @default.
- W1965307173 creator A5063950942 @default.
- W1965307173 date "2005-11-04" @default.
- W1965307173 modified "2023-09-24" @default.
- W1965307173 title "Molecular dynamics simulations of the structural and dynamic properties of graphite-supported bimetallic transition metal clusters" @default.
- W1965307173 cites W1602480768 @default.
- W1965307173 cites W1963989017 @default.
- W1965307173 cites W1964488838 @default.
- W1965307173 cites W1967084512 @default.
- W1965307173 cites W1972262233 @default.
- W1965307173 cites W1972374046 @default.
- W1965307173 cites W1974303993 @default.
- W1965307173 cites W1974319844 @default.
- W1965307173 cites W1978760596 @default.
- W1965307173 cites W1982760391 @default.
- W1965307173 cites W1986492705 @default.
- W1965307173 cites W1990379700 @default.
- W1965307173 cites W1993853948 @default.
- W1965307173 cites W1997498714 @default.
- W1965307173 cites W2000743927 @default.
- W1965307173 cites W2002203037 @default.
- W1965307173 cites W2005934801 @default.
- W1965307173 cites W2006106581 @default.
- W1965307173 cites W2006979768 @default.
- W1965307173 cites W2007195674 @default.
- W1965307173 cites W2015651464 @default.
- W1965307173 cites W2016087616 @default.
- W1965307173 cites W2016687799 @default.
- W1965307173 cites W2018291822 @default.
- W1965307173 cites W2020405222 @default.
- W1965307173 cites W2021498992 @default.
- W1965307173 cites W2022509668 @default.
- W1965307173 cites W2026017682 @default.
- W1965307173 cites W2026091032 @default.
- W1965307173 cites W2026904953 @default.
- W1965307173 cites W2031577750 @default.
- W1965307173 cites W2037978495 @default.
- W1965307173 cites W2049017279 @default.
- W1965307173 cites W2056802979 @default.
- W1965307173 cites W2058405392 @default.
- W1965307173 cites W2063535332 @default.
- W1965307173 cites W2063750458 @default.
- W1965307173 cites W2063767924 @default.
- W1965307173 cites W2067746562 @default.
- W1965307173 cites W2069989232 @default.
- W1965307173 cites W2071204615 @default.
- W1965307173 cites W2077386703 @default.
- W1965307173 cites W2082349588 @default.
- W1965307173 cites W2085081183 @default.
- W1965307173 cites W2085538565 @default.
- W1965307173 cites W2092192394 @default.
- W1965307173 cites W2092204065 @default.
- W1965307173 cites W2093092293 @default.
- W1965307173 cites W2093262329 @default.
- W1965307173 cites W2163696546 @default.
- W1965307173 cites W2329917748 @default.
- W1965307173 cites W4250824995 @default.
- W1965307173 cites W4252565171 @default.
- W1965307173 doi "https://doi.org/10.1103/physrevb.72.195405" @default.
- W1965307173 hasPublicationYear "2005" @default.
- W1965307173 type Work @default.
- W1965307173 sameAs 1965307173 @default.
- W1965307173 citedByCount "65" @default.
- W1965307173 countsByYear W19653071732012 @default.
- W1965307173 countsByYear W19653071732013 @default.
- W1965307173 countsByYear W19653071732014 @default.
- W1965307173 countsByYear W19653071732015 @default.
- W1965307173 countsByYear W19653071732016 @default.
- W1965307173 countsByYear W19653071732017 @default.
- W1965307173 countsByYear W19653071732018 @default.
- W1965307173 countsByYear W19653071732019 @default.
- W1965307173 countsByYear W19653071732021 @default.
- W1965307173 countsByYear W19653071732022 @default.
- W1965307173 countsByYear W19653071732023 @default.
- W1965307173 crossrefType "journal-article" @default.
- W1965307173 hasAuthorship W1965307173A5010369187 @default.
- W1965307173 hasAuthorship W1965307173A5049657915 @default.
- W1965307173 hasAuthorship W1965307173A5063950942 @default.
- W1965307173 hasConcept C106773901 @default.
- W1965307173 hasConcept C121332964 @default.
- W1965307173 hasConcept C159985019 @default.
- W1965307173 hasConcept C161790260 @default.
- W1965307173 hasConcept C171250308 @default.
- W1965307173 hasConcept C185592680 @default.
- W1965307173 hasConcept C191897082 @default.
- W1965307173 hasConcept C192562407 @default.
- W1965307173 hasConcept C2778402822 @default.
- W1965307173 hasConcept C2779698641 @default.
- W1965307173 hasConcept C43411465 @default.
- W1965307173 hasConcept C544153396 @default.
- W1965307173 hasConcept C55493867 @default.
- W1965307173 hasConcept C59593255 @default.
- W1965307173 hasConcept C62520636 @default.
- W1965307173 hasConcept C8010536 @default.
- W1965307173 hasConcept C97355855 @default.
- W1965307173 hasConceptScore W1965307173C106773901 @default.
- W1965307173 hasConceptScore W1965307173C121332964 @default.