Matches in SemOpenAlex for { <https://semopenalex.org/work/W1965313623> ?p ?o ?g. }
- W1965313623 endingPage "272" @default.
- W1965313623 startingPage "262" @default.
- W1965313623 abstract "Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putative sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using Random Forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers was 71–88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR Toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the Scorecard database of possible skin or sense organ toxicants as primary candidates for experimental validation." @default.
- W1965313623 created "2016-06-24" @default.
- W1965313623 creator A5029916489 @default.
- W1965313623 creator A5040691234 @default.
- W1965313623 creator A5067687769 @default.
- W1965313623 creator A5071012302 @default.
- W1965313623 creator A5072029339 @default.
- W1965313623 creator A5078536199 @default.
- W1965313623 creator A5084541486 @default.
- W1965313623 date "2015-04-01" @default.
- W1965313623 modified "2023-10-15" @default.
- W1965313623 title "Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds" @default.
- W1965313623 cites W1545231783 @default.
- W1965313623 cites W1584500125 @default.
- W1965313623 cites W1753071495 @default.
- W1965313623 cites W1970147451 @default.
- W1965313623 cites W1970512627 @default.
- W1965313623 cites W1970962798 @default.
- W1965313623 cites W1975302305 @default.
- W1965313623 cites W1977351276 @default.
- W1965313623 cites W1980094133 @default.
- W1965313623 cites W1988105019 @default.
- W1965313623 cites W1988984170 @default.
- W1965313623 cites W1992470121 @default.
- W1965313623 cites W1993658135 @default.
- W1965313623 cites W1996829560 @default.
- W1965313623 cites W1997782126 @default.
- W1965313623 cites W2000089305 @default.
- W1965313623 cites W2000276455 @default.
- W1965313623 cites W2002097322 @default.
- W1965313623 cites W2004590673 @default.
- W1965313623 cites W2005170920 @default.
- W1965313623 cites W2010524461 @default.
- W1965313623 cites W2012299963 @default.
- W1965313623 cites W2016836376 @default.
- W1965313623 cites W2020385908 @default.
- W1965313623 cites W2021389393 @default.
- W1965313623 cites W2024874778 @default.
- W1965313623 cites W2035652171 @default.
- W1965313623 cites W2036899489 @default.
- W1965313623 cites W2038301580 @default.
- W1965313623 cites W2039183761 @default.
- W1965313623 cites W2039609876 @default.
- W1965313623 cites W2043976293 @default.
- W1965313623 cites W2044845433 @default.
- W1965313623 cites W2052396986 @default.
- W1965313623 cites W2053090797 @default.
- W1965313623 cites W2053663403 @default.
- W1965313623 cites W2057069496 @default.
- W1965313623 cites W2058220696 @default.
- W1965313623 cites W2059159736 @default.
- W1965313623 cites W2066810034 @default.
- W1965313623 cites W2070513667 @default.
- W1965313623 cites W2073769482 @default.
- W1965313623 cites W2081159973 @default.
- W1965313623 cites W2084694949 @default.
- W1965313623 cites W2087482484 @default.
- W1965313623 cites W2087661061 @default.
- W1965313623 cites W2092028991 @default.
- W1965313623 cites W2095473265 @default.
- W1965313623 cites W2103321550 @default.
- W1965313623 cites W2104742871 @default.
- W1965313623 cites W2108285359 @default.
- W1965313623 cites W2123755357 @default.
- W1965313623 cites W2127676159 @default.
- W1965313623 cites W2128245586 @default.
- W1965313623 cites W2131344866 @default.
- W1965313623 cites W2137473548 @default.
- W1965313623 cites W2140461696 @default.
- W1965313623 cites W2141540939 @default.
- W1965313623 cites W2141649159 @default.
- W1965313623 cites W2148960588 @default.
- W1965313623 cites W2157312113 @default.
- W1965313623 cites W2157971131 @default.
- W1965313623 cites W2159830462 @default.
- W1965313623 cites W2168096927 @default.
- W1965313623 cites W2169204622 @default.
- W1965313623 cites W2911964244 @default.
- W1965313623 cites W4241259814 @default.
- W1965313623 cites W4297932630 @default.
- W1965313623 cites W4302438778 @default.
- W1965313623 cites W96929193 @default.
- W1965313623 doi "https://doi.org/10.1016/j.taap.2014.12.014" @default.
- W1965313623 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4546933" @default.
- W1965313623 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25560674" @default.
- W1965313623 hasPublicationYear "2015" @default.
- W1965313623 type Work @default.
- W1965313623 sameAs 1965313623 @default.
- W1965313623 citedByCount "67" @default.
- W1965313623 countsByYear W19653136232015 @default.
- W1965313623 countsByYear W19653136232016 @default.
- W1965313623 countsByYear W19653136232017 @default.
- W1965313623 countsByYear W19653136232018 @default.
- W1965313623 countsByYear W19653136232019 @default.
- W1965313623 countsByYear W19653136232020 @default.
- W1965313623 countsByYear W19653136232021 @default.
- W1965313623 countsByYear W19653136232022 @default.
- W1965313623 countsByYear W19653136232023 @default.