Matches in SemOpenAlex for { <https://semopenalex.org/work/W1965359124> ?p ?o ?g. }
- W1965359124 endingPage "314" @default.
- W1965359124 startingPage "303" @default.
- W1965359124 abstract "The characterization and analysis of on-line customers' needs and expectations, regarding the Internet as a new marketing channel, is considered a prerequisite to the realization of the expected growth of the consumer-oriented electronic commerce market. The aim of the present study is twofold: to carry out an exploratory segmentation of this market that can throw some light upon its structure, and to characterize the on-line shopping adoption process. The Self-Organizing Map (SOM), an unsupervised neural network model devised by Kohonen (Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43(1), 59–69; Kohonen, T., (1995). Self-organizing maps. Berlin: Springer) will be used as part of a tandem approach to segmentation, which involves the factor analysis of the observable variables in the data to be analyzed, prior to clustering. The SOM is shown to be a powerful data visualization tool, able to assist the data analysis, providing supervised methods with useful explanatory capabilities. It is also applied, in a completely unsupervised mode, to discover the clusters or segments that naturally occur in the data. The SOM is proposed as a flexible clustering model able to accommodate both Finer Segmentation and Normative Segmentation approaches. Within the latter, a cluster-partition is proposed and analysed, and high-level customer profiles, of potential interest to on-line marketers, are derived and described in marketing terms." @default.
- W1965359124 created "2016-06-24" @default.
- W1965359124 creator A5010155676 @default.
- W1965359124 creator A5069425032 @default.
- W1965359124 creator A5071315413 @default.
- W1965359124 date "1999-11-01" @default.
- W1965359124 modified "2023-10-14" @default.
- W1965359124 title "Segmentation of the on-line shopping market using neural networks" @default.
- W1965359124 cites W1516072597 @default.
- W1965359124 cites W1552922844 @default.
- W1965359124 cites W1605202291 @default.
- W1965359124 cites W1605607952 @default.
- W1965359124 cites W1978587267 @default.
- W1965359124 cites W1982455127 @default.
- W1965359124 cites W1983017713 @default.
- W1965359124 cites W1986397811 @default.
- W1965359124 cites W1992136848 @default.
- W1965359124 cites W2000927248 @default.
- W1965359124 cites W2003634948 @default.
- W1965359124 cites W2012866139 @default.
- W1965359124 cites W2012938463 @default.
- W1965359124 cites W2019800008 @default.
- W1965359124 cites W2023575498 @default.
- W1965359124 cites W2038860889 @default.
- W1965359124 cites W2042351117 @default.
- W1965359124 cites W2052459168 @default.
- W1965359124 cites W2058417559 @default.
- W1965359124 cites W2062827704 @default.
- W1965359124 cites W2083686278 @default.
- W1965359124 cites W2107636931 @default.
- W1965359124 cites W2125478079 @default.
- W1965359124 cites W2127867554 @default.
- W1965359124 cites W2135046657 @default.
- W1965359124 cites W2156771765 @default.
- W1965359124 cites W2315268791 @default.
- W1965359124 cites W2320036262 @default.
- W1965359124 cites W4230892099 @default.
- W1965359124 cites W4242277684 @default.
- W1965359124 cites W4244577065 @default.
- W1965359124 cites W65738273 @default.
- W1965359124 doi "https://doi.org/10.1016/s0957-4174(99)00042-1" @default.
- W1965359124 hasPublicationYear "1999" @default.
- W1965359124 type Work @default.
- W1965359124 sameAs 1965359124 @default.
- W1965359124 citedByCount "118" @default.
- W1965359124 countsByYear W19653591242012 @default.
- W1965359124 countsByYear W19653591242013 @default.
- W1965359124 countsByYear W19653591242014 @default.
- W1965359124 countsByYear W19653591242015 @default.
- W1965359124 countsByYear W19653591242016 @default.
- W1965359124 countsByYear W19653591242017 @default.
- W1965359124 countsByYear W19653591242018 @default.
- W1965359124 countsByYear W19653591242019 @default.
- W1965359124 countsByYear W19653591242020 @default.
- W1965359124 countsByYear W19653591242021 @default.
- W1965359124 countsByYear W19653591242022 @default.
- W1965359124 countsByYear W19653591242023 @default.
- W1965359124 crossrefType "journal-article" @default.
- W1965359124 hasAuthorship W1965359124A5010155676 @default.
- W1965359124 hasAuthorship W1965359124A5069425032 @default.
- W1965359124 hasAuthorship W1965359124A5071315413 @default.
- W1965359124 hasConcept C111168008 @default.
- W1965359124 hasConcept C119857082 @default.
- W1965359124 hasConcept C124101348 @default.
- W1965359124 hasConcept C125308379 @default.
- W1965359124 hasConcept C144133560 @default.
- W1965359124 hasConcept C153180895 @default.
- W1965359124 hasConcept C154945302 @default.
- W1965359124 hasConcept C162853370 @default.
- W1965359124 hasConcept C41008148 @default.
- W1965359124 hasConcept C50644808 @default.
- W1965359124 hasConcept C73555534 @default.
- W1965359124 hasConcept C8038995 @default.
- W1965359124 hasConcept C89600930 @default.
- W1965359124 hasConceptScore W1965359124C111168008 @default.
- W1965359124 hasConceptScore W1965359124C119857082 @default.
- W1965359124 hasConceptScore W1965359124C124101348 @default.
- W1965359124 hasConceptScore W1965359124C125308379 @default.
- W1965359124 hasConceptScore W1965359124C144133560 @default.
- W1965359124 hasConceptScore W1965359124C153180895 @default.
- W1965359124 hasConceptScore W1965359124C154945302 @default.
- W1965359124 hasConceptScore W1965359124C162853370 @default.
- W1965359124 hasConceptScore W1965359124C41008148 @default.
- W1965359124 hasConceptScore W1965359124C50644808 @default.
- W1965359124 hasConceptScore W1965359124C73555534 @default.
- W1965359124 hasConceptScore W1965359124C8038995 @default.
- W1965359124 hasConceptScore W1965359124C89600930 @default.
- W1965359124 hasIssue "4" @default.
- W1965359124 hasLocation W19653591241 @default.
- W1965359124 hasOpenAccess W1965359124 @default.
- W1965359124 hasPrimaryLocation W19653591241 @default.
- W1965359124 hasRelatedWork W1501331687 @default.
- W1965359124 hasRelatedWork W2045342254 @default.
- W1965359124 hasRelatedWork W2142182663 @default.
- W1965359124 hasRelatedWork W2326647871 @default.
- W1965359124 hasRelatedWork W2501551404 @default.
- W1965359124 hasRelatedWork W2535231171 @default.
- W1965359124 hasRelatedWork W2592395359 @default.