Matches in SemOpenAlex for { <https://semopenalex.org/work/W1965478052> ?p ?o ?g. }
- W1965478052 endingPage "356" @default.
- W1965478052 startingPage "279" @default.
- W1965478052 abstract "A computerized data base, including 330 localities and believed to represent at least 95% of the presently recorded spot accumulations of ore-grade Mn on land, is the basis for a quantitative analysis of terrestrial Mn resources. This file is reprinted in full (Appendix). The present subaerially exposed global ore Mn resources are calculated as 17.9 × 109 t Mn1. In this figure are included the actually mineable straight Mn deposits (8.7 × 109 t Mn); potentially mineable land-based Mn accumulations (9.2 × 109 t Mn), and actual or potential Mn that could be extracted as a byproduct of mining other metals (0.6 × 109 t Mn). This distribution is strongly influenced by giant accumulations, where the single, exceptional Kalahari Mn field contains over 50% of the presently economic Mn ore reserves, or 23.42% of the global land Mn resources. A set of attributes has been selected to treat the global ore Mn population in terms of genesis, geotectonic and environmental setting, and lithologic associations. In terms of genesis, precipitation from aqueous solutions was responsible for at least 99% of the contemporaneous, and probably also the past Mn accumulations now exposed on land. Weathering of Mn orebodies has left its mark on 93% of the Mn localities, and 24% are now represented entirely by supergene assemblages. Less than 0.01% of the ore Mn resources, however, are formed by weathering-related accumulation over silicate rocks (ultramafics). In terms of geotectonic environments, the bulk of the land-based Mn deposits (97%) formed in intraplate and stable continental margin settings; 3.1% formed along Pacific-type and rift-type continental margins; and only 0.00045% of the deposits formed in an oceanic setting. This is in contrast with the outstanding Mn-accumulating capacity of the present ocean and is a consequence of the low preservation potential of the oceanic domain. In terms of lithologic associations, 96% of the Mn in land-based deposits is present in marine-sedimentary associations (70% of Mn is in banded iron formations, 14.4% is in detrital and 11.1% is in carbonate-dominated associations). Chert and jasper, limestone, sandstone, shale, and banded iron formation are statistically the most common immediate hosts to Mn ores with recorded hosting frequencies of 79, 50, 45, 37 and 35, respectively. In terms of geological history, the lower Proterozoic accounts for 58.9% of the prreserved ore Mn on land, followed by Oligocene (17.2%), Jurassic (6.2%) and middle Proterozoic (4.5%). In terms of the intensity of Mn accumulation per one million years of geological time, Oligocene (110 × 106 t Mn/ma) is two orders of magnitude greater than the nearest time periods: Jurassic (8.9 × 106 t Mn/ma) and lower Proterozoic (6.5 × 106 t Mn/ma). The historical distribution pattern of the land-based Mn deposits seems to indicate that accumulation of the bulk of the present ore-grade Mn is the result of repeated recycling with a land → ocean trend, abruptly initiated at the time of early cratonization (about 2.5 Ga). This has been supplemented by a substantially less significant, but remarkably steady reverse trend of addition of juvenile Mn released from the mantle into the crust. Mafics and particularly basalts are the most important intermediaries in the cumulative secular increase of liberated and accumulated Mn in the crust. Direct to indirect, proven to hypothetical spatial coincidence of “basalts” and Mn ores can be demonstrated on at least 169 localities out of 330 (= 51%) evaluated." @default.
- W1965478052 created "2016-06-24" @default.
- W1965478052 creator A5025668860 @default.
- W1965478052 date "1992-10-01" @default.
- W1965478052 modified "2023-10-12" @default.
- W1965478052 title "Manganese deposits in the global lithogenetic system: Quantitative approach" @default.
- W1965478052 cites W1964564450 @default.
- W1965478052 cites W1967147152 @default.
- W1965478052 cites W1968791405 @default.
- W1965478052 cites W1970253591 @default.
- W1965478052 cites W1974393234 @default.
- W1965478052 cites W1976584640 @default.
- W1965478052 cites W1984609433 @default.
- W1965478052 cites W1987659983 @default.
- W1965478052 cites W1989178573 @default.
- W1965478052 cites W1996681409 @default.
- W1965478052 cites W1997483417 @default.
- W1965478052 cites W2002265758 @default.
- W1965478052 cites W2002713024 @default.
- W1965478052 cites W2006341252 @default.
- W1965478052 cites W2006586714 @default.
- W1965478052 cites W2006617845 @default.
- W1965478052 cites W2007130414 @default.
- W1965478052 cites W2010211832 @default.
- W1965478052 cites W2010983314 @default.
- W1965478052 cites W2016880879 @default.
- W1965478052 cites W2017358875 @default.
- W1965478052 cites W2018122760 @default.
- W1965478052 cites W2026622129 @default.
- W1965478052 cites W2027316543 @default.
- W1965478052 cites W2030666288 @default.
- W1965478052 cites W2031678578 @default.
- W1965478052 cites W2034809828 @default.
- W1965478052 cites W2035571629 @default.
- W1965478052 cites W2039383795 @default.
- W1965478052 cites W2040124499 @default.
- W1965478052 cites W2042368994 @default.
- W1965478052 cites W2051465060 @default.
- W1965478052 cites W2057136889 @default.
- W1965478052 cites W2058099042 @default.
- W1965478052 cites W2060643649 @default.
- W1965478052 cites W2061379333 @default.
- W1965478052 cites W2063582108 @default.
- W1965478052 cites W2069658823 @default.
- W1965478052 cites W2071194416 @default.
- W1965478052 cites W2079335179 @default.
- W1965478052 cites W2082459366 @default.
- W1965478052 cites W2084475519 @default.
- W1965478052 cites W2085943467 @default.
- W1965478052 cites W2088452589 @default.
- W1965478052 cites W2089217208 @default.
- W1965478052 cites W2093043887 @default.
- W1965478052 cites W2102899983 @default.
- W1965478052 cites W2102900693 @default.
- W1965478052 cites W2110863808 @default.
- W1965478052 cites W2111555634 @default.
- W1965478052 cites W2112248478 @default.
- W1965478052 cites W2121675696 @default.
- W1965478052 cites W2124696703 @default.
- W1965478052 cites W2126952920 @default.
- W1965478052 cites W2132547846 @default.
- W1965478052 cites W2134983726 @default.
- W1965478052 cites W2145693438 @default.
- W1965478052 cites W2148830162 @default.
- W1965478052 cites W2150309769 @default.
- W1965478052 cites W2153193630 @default.
- W1965478052 cites W2153840759 @default.
- W1965478052 cites W2155222771 @default.
- W1965478052 cites W2166501334 @default.
- W1965478052 cites W2324510619 @default.
- W1965478052 cites W2331505399 @default.
- W1965478052 cites W2808086100 @default.
- W1965478052 cites W3123370553 @default.
- W1965478052 cites W2020871959 @default.
- W1965478052 doi "https://doi.org/10.1016/0169-1368(92)90013-b" @default.
- W1965478052 hasPublicationYear "1992" @default.
- W1965478052 type Work @default.
- W1965478052 sameAs 1965478052 @default.
- W1965478052 citedByCount "53" @default.
- W1965478052 countsByYear W19654780522012 @default.
- W1965478052 countsByYear W19654780522013 @default.
- W1965478052 countsByYear W19654780522014 @default.
- W1965478052 countsByYear W19654780522015 @default.
- W1965478052 countsByYear W19654780522017 @default.
- W1965478052 countsByYear W19654780522018 @default.
- W1965478052 countsByYear W19654780522019 @default.
- W1965478052 countsByYear W19654780522020 @default.
- W1965478052 countsByYear W19654780522021 @default.
- W1965478052 countsByYear W19654780522022 @default.
- W1965478052 countsByYear W19654780522023 @default.
- W1965478052 crossrefType "journal-article" @default.
- W1965478052 hasAuthorship W1965478052A5025668860 @default.
- W1965478052 hasConcept C102198088 @default.
- W1965478052 hasConcept C122792734 @default.
- W1965478052 hasConcept C126457475 @default.
- W1965478052 hasConcept C127313418 @default.
- W1965478052 hasConcept C144024400 @default.
- W1965478052 hasConcept C149923435 @default.