Matches in SemOpenAlex for { <https://semopenalex.org/work/W1965497457> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W1965497457 endingPage "320" @default.
- W1965497457 startingPage "315" @default.
- W1965497457 abstract "Abstract Methods of iterative solution for the partial-differential equations governing the transient flow of gases in pipelines are obtained by using the method of characteristics and linear finite-difference techniques. Solutions are developed for (1) a constant gas compressibility factor throughout transient conditions, and (2) a variable gas compressibility factor at constant temperature, dependent upon pressures encountered during transient flow. Theoretical studies are made to compare results using both approaches for pipelines operating at various constant flowing temperatures. Results show greater differences between the two methods at lower values of flowing temperature due to the more rapidly changing compressibility factor as a function of variable pressure. Introduction The partial-differential momentum and mass equations describing transient gas pipe flow have been solved by various numerical methods. Among the techniques frequently employed in recent studies are implicit finite-differences and the method of characteristics. While these studies have been concerned with the numerical techniques and stability criteria required in transient flow solutions, few investigations have examined the effect of a variable gas compressibility factor on transient behavior. The purpose of this study is to develop and apply the numerical equations of transient gas pipe flow based on (1) a constant gas compressibility factor evaluated at the average of inlet and outlet pressures at initial time, and (2) a gas compressibility factor completely dependent upon the gas pressures encountered in the pipeline during steady- and unsteady-state flow. For both approaches, digital computer solutions of the partial-differential equations describing gas pipe flow are made possible by application of the characteristics transformation and linear finite-difference approximations. The theoretical results, based on both constant and variable gas compressibility, are compared graphically for various transient flow conditions with particular emphasis placed upon temperature effects. Numerous limiting assumptions are required in the development of any steady- or unsteady-state flow equations. In this study, the following assumptions are made.Elevation changes in the pipeline are negligible.Flow is isothermal and single-phase.Gas composition remains constant throughout each transient flow investigation.Friction factor is constant for a given pipe diameter.All variations in boundary conditions take place at inlet and outlet.Pipeline is of constant cross-sectional area. The first three assumptions are essential for the equation development in this investigation. While the remaining assumptions could be neglected without debasing the integrity of the development, they are accepted here in order to simplify the numerical solution. BASIC DEVELOPMENT Attractive forces existing between gas molecules cause the actual volume of a gas to deviate from those volumes predicted by the ideal gas law. To account for these variations in volume, the gas compressibility factor is applied as a correction term to the ideal gas equation of state. Thus, for methane and natural gas, (1) p V = z n R T (All variables, except for terms requiring specific units, are defined in the Nomenclature.)Since the value of the compressibility factor is essential in gas metering, charts and tables have been devised to aid in its determination; but this procedure usually requires a lengthy calculation involving gas composition, pressure and temperature. SPEJ P. 315ˆ" @default.
- W1965497457 created "2016-06-24" @default.
- W1965497457 creator A5008806401 @default.
- W1965497457 creator A5088790716 @default.
- W1965497457 date "1972-08-01" @default.
- W1965497457 modified "2023-09-27" @default.
- W1965497457 title "Compressibility Effects on Transient Gas Pipe Flow" @default.
- W1965497457 doi "https://doi.org/10.2118/3648-pa" @default.
- W1965497457 hasPublicationYear "1972" @default.
- W1965497457 type Work @default.
- W1965497457 sameAs 1965497457 @default.
- W1965497457 citedByCount "2" @default.
- W1965497457 countsByYear W19654974572021 @default.
- W1965497457 crossrefType "journal-article" @default.
- W1965497457 hasAuthorship W1965497457A5008806401 @default.
- W1965497457 hasAuthorship W1965497457A5088790716 @default.
- W1965497457 hasConcept C111919701 @default.
- W1965497457 hasConcept C121332964 @default.
- W1965497457 hasConcept C134306372 @default.
- W1965497457 hasConcept C175309249 @default.
- W1965497457 hasConcept C178790620 @default.
- W1965497457 hasConcept C185592680 @default.
- W1965497457 hasConcept C2780799671 @default.
- W1965497457 hasConcept C33923547 @default.
- W1965497457 hasConcept C38349280 @default.
- W1965497457 hasConcept C41008148 @default.
- W1965497457 hasConcept C57879066 @default.
- W1965497457 hasConcept C78045399 @default.
- W1965497457 hasConcept C8244237 @default.
- W1965497457 hasConcept C84655787 @default.
- W1965497457 hasConcept C93779851 @default.
- W1965497457 hasConcept C97355855 @default.
- W1965497457 hasConceptScore W1965497457C111919701 @default.
- W1965497457 hasConceptScore W1965497457C121332964 @default.
- W1965497457 hasConceptScore W1965497457C134306372 @default.
- W1965497457 hasConceptScore W1965497457C175309249 @default.
- W1965497457 hasConceptScore W1965497457C178790620 @default.
- W1965497457 hasConceptScore W1965497457C185592680 @default.
- W1965497457 hasConceptScore W1965497457C2780799671 @default.
- W1965497457 hasConceptScore W1965497457C33923547 @default.
- W1965497457 hasConceptScore W1965497457C38349280 @default.
- W1965497457 hasConceptScore W1965497457C41008148 @default.
- W1965497457 hasConceptScore W1965497457C57879066 @default.
- W1965497457 hasConceptScore W1965497457C78045399 @default.
- W1965497457 hasConceptScore W1965497457C8244237 @default.
- W1965497457 hasConceptScore W1965497457C84655787 @default.
- W1965497457 hasConceptScore W1965497457C93779851 @default.
- W1965497457 hasConceptScore W1965497457C97355855 @default.
- W1965497457 hasIssue "04" @default.
- W1965497457 hasLocation W19654974571 @default.
- W1965497457 hasOpenAccess W1965497457 @default.
- W1965497457 hasPrimaryLocation W19654974571 @default.
- W1965497457 hasRelatedWork W1987884030 @default.
- W1965497457 hasRelatedWork W2007268038 @default.
- W1965497457 hasRelatedWork W2013519459 @default.
- W1965497457 hasRelatedWork W2051137783 @default.
- W1965497457 hasRelatedWork W2150216526 @default.
- W1965497457 hasRelatedWork W2279257267 @default.
- W1965497457 hasRelatedWork W2548703912 @default.
- W1965497457 hasRelatedWork W3081161385 @default.
- W1965497457 hasRelatedWork W1663627608 @default.
- W1965497457 hasRelatedWork W2186915193 @default.
- W1965497457 hasVolume "12" @default.
- W1965497457 isParatext "false" @default.
- W1965497457 isRetracted "false" @default.
- W1965497457 magId "1965497457" @default.
- W1965497457 workType "article" @default.