Matches in SemOpenAlex for { <https://semopenalex.org/work/W1965610010> ?p ?o ?g. }
- W1965610010 endingPage "66" @default.
- W1965610010 startingPage "48" @default.
- W1965610010 abstract "Similar geographic areas often have great variations in population size. In health data management and analysis, it is desirable to obtain regions of comparable population by decomposing areas of large population (to gain more spatial variability) and merging areas of small population (to mask privacy of data). Based on the Peano curve algorithm and modified scale-space clustering, this research proposes a mixed-level regionalization (MLR) method to construct geographic areas with comparable population. The method accounts for spatial connectivity and compactness, attributive homogeneity, and exogenous criteria such as minimum (and approximately equal) population or disease counts. A case study using Louisiana cancer data illustrates the MLR method and its strengths and limitations. A major benefit of the method is that most upper level geographic boundaries can be preserved to increase familiarity of constructed areas. Therefore, the MLR method is more human-oriented and place-based than computer-oriented and space-based." @default.
- W1965610010 created "2016-06-24" @default.
- W1965610010 creator A5008934383 @default.
- W1965610010 creator A5039504348 @default.
- W1965610010 creator A5060956126 @default.
- W1965610010 creator A5075691677 @default.
- W1965610010 date "2014-12-10" @default.
- W1965610010 modified "2023-10-17" @default.
- W1965610010 title "A Place-Oriented, Mixed-Level Regionalization Method for Constructing Geographic Areas in Health Data Dissemination and Analysis" @default.
- W1965610010 cites W127710828 @default.
- W1965610010 cites W138173982 @default.
- W1965610010 cites W1480259234 @default.
- W1965610010 cites W1491717342 @default.
- W1965610010 cites W149207224 @default.
- W1965610010 cites W1525798845 @default.
- W1965610010 cites W1563175566 @default.
- W1965610010 cites W187001566 @default.
- W1965610010 cites W1966812759 @default.
- W1965610010 cites W1975096400 @default.
- W1965610010 cites W1980743243 @default.
- W1965610010 cites W1984926675 @default.
- W1965610010 cites W1996233177 @default.
- W1965610010 cites W2002216916 @default.
- W1965610010 cites W2010523897 @default.
- W1965610010 cites W2011529808 @default.
- W1965610010 cites W2015270313 @default.
- W1965610010 cites W2016030832 @default.
- W1965610010 cites W2022071145 @default.
- W1965610010 cites W2022735534 @default.
- W1965610010 cites W2023725582 @default.
- W1965610010 cites W2025841116 @default.
- W1965610010 cites W2026826887 @default.
- W1965610010 cites W2026976549 @default.
- W1965610010 cites W2039856017 @default.
- W1965610010 cites W2040156460 @default.
- W1965610010 cites W2040374165 @default.
- W1965610010 cites W2041992473 @default.
- W1965610010 cites W2049615049 @default.
- W1965610010 cites W2066721369 @default.
- W1965610010 cites W2071600293 @default.
- W1965610010 cites W2072605585 @default.
- W1965610010 cites W2072872985 @default.
- W1965610010 cites W2080215654 @default.
- W1965610010 cites W2082171763 @default.
- W1965610010 cites W2088594973 @default.
- W1965610010 cites W2093634727 @default.
- W1965610010 cites W2138730910 @default.
- W1965610010 cites W2139839146 @default.
- W1965610010 cites W2145385311 @default.
- W1965610010 cites W2148509228 @default.
- W1965610010 cites W2149477888 @default.
- W1965610010 cites W2158184062 @default.
- W1965610010 cites W2166605782 @default.
- W1965610010 cites W2506841798 @default.
- W1965610010 cites W3121220749 @default.
- W1965610010 cites W4246962530 @default.
- W1965610010 cites W4252102199 @default.
- W1965610010 doi "https://doi.org/10.1080/00045608.2014.968910" @default.
- W1965610010 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4523277" @default.
- W1965610010 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26251551" @default.
- W1965610010 hasPublicationYear "2014" @default.
- W1965610010 type Work @default.
- W1965610010 sameAs 1965610010 @default.
- W1965610010 citedByCount "24" @default.
- W1965610010 countsByYear W19656100102015 @default.
- W1965610010 countsByYear W19656100102018 @default.
- W1965610010 countsByYear W19656100102019 @default.
- W1965610010 countsByYear W19656100102021 @default.
- W1965610010 countsByYear W19656100102022 @default.
- W1965610010 crossrefType "journal-article" @default.
- W1965610010 hasAuthorship W1965610010A5008934383 @default.
- W1965610010 hasAuthorship W1965610010A5039504348 @default.
- W1965610010 hasAuthorship W1965610010A5060956126 @default.
- W1965610010 hasAuthorship W1965610010A5075691677 @default.
- W1965610010 hasBestOaLocation W19656100102 @default.
- W1965610010 hasConcept C105795698 @default.
- W1965610010 hasConcept C124101348 @default.
- W1965610010 hasConcept C144024400 @default.
- W1965610010 hasConcept C149923435 @default.
- W1965610010 hasConcept C159620131 @default.
- W1965610010 hasConcept C205649164 @default.
- W1965610010 hasConcept C2908647359 @default.
- W1965610010 hasConcept C33923547 @default.
- W1965610010 hasConcept C41008148 @default.
- W1965610010 hasConcept C41856607 @default.
- W1965610010 hasConcept C58640448 @default.
- W1965610010 hasConcept C62649853 @default.
- W1965610010 hasConcept C73555534 @default.
- W1965610010 hasConceptScore W1965610010C105795698 @default.
- W1965610010 hasConceptScore W1965610010C124101348 @default.
- W1965610010 hasConceptScore W1965610010C144024400 @default.
- W1965610010 hasConceptScore W1965610010C149923435 @default.
- W1965610010 hasConceptScore W1965610010C159620131 @default.
- W1965610010 hasConceptScore W1965610010C205649164 @default.
- W1965610010 hasConceptScore W1965610010C2908647359 @default.
- W1965610010 hasConceptScore W1965610010C33923547 @default.
- W1965610010 hasConceptScore W1965610010C41008148 @default.
- W1965610010 hasConceptScore W1965610010C41856607 @default.