Matches in SemOpenAlex for { <https://semopenalex.org/work/W1965647971> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W1965647971 endingPage "1930" @default.
- W1965647971 startingPage "1893" @default.
- W1965647971 abstract "A random graph process, G1(n), is a sequence of graphs on n vertices which begins with the edgeless graph, and where at each step a single edge is added according to a uniform distribution on the missing edges. It is well known that in such a process a giant component (of linear size) typically emerges after (1 + o(1))n2 edges (a phenomenon known as “the double jump”), i.e., at time t = 1 when using a timescale of n/2 edges in each step. We consider a generalization of this process, GK(n), proposed by Itai Benjamini in order to model the spreading of an epidemic. This generalized process gives a weight of size 1 to missing edges between pairs of isolated vertices, and a weight of size K ∈ [0,∞) otherwise. This corresponds to a case where links are added between n initially isolated settlements, where the probability of a new link in each step is biased according to whether or not its two endpoint settlements are still isolated. Combining methods of [13] with analytical techniques, we describe the typical emerging time of a giant component in this process, tc(K), as the singularity point of a solution to a set of differential equations. We proceed to analyze these differential equations and obtain properties of GK , and in particular, we show that tc(K) strictly decreases from 32 to 0 as K increases from 0 to ∞, and that tc(K) = 4 √3K (1 + o(1)), where the o(1)-term tends to 0 as K → ∞. Numerical approximations of the differential equations agree both with computer simulations of the process GK(n) and with the analytical results." @default.
- W1965647971 created "2016-06-24" @default.
- W1965647971 creator A5036781157 @default.
- W1965647971 creator A5047720470 @default.
- W1965647971 creator A5060399988 @default.
- W1965647971 creator A5062844820 @default.
- W1965647971 date "2010-01-01" @default.
- W1965647971 modified "2023-09-26" @default.
- W1965647971 title "Giant components in biased graph processes" @default.
- W1965647971 cites W1657347807 @default.
- W1965647971 cites W1975999171 @default.
- W1965647971 cites W2002387903 @default.
- W1965647971 cites W2004427634 @default.
- W1965647971 cites W2012690654 @default.
- W1965647971 cites W2033468284 @default.
- W1965647971 cites W2061826427 @default.
- W1965647971 cites W2066652472 @default.
- W1965647971 cites W2070589948 @default.
- W1965647971 cites W2094803507 @default.
- W1965647971 cites W2095403663 @default.
- W1965647971 cites W2752885492 @default.
- W1965647971 cites W2905110430 @default.
- W1965647971 cites W3143219376 @default.
- W1965647971 cites W5090298 @default.
- W1965647971 doi "https://doi.org/10.1512/iumj.2010.59.4008" @default.
- W1965647971 hasPublicationYear "2010" @default.
- W1965647971 type Work @default.
- W1965647971 sameAs 1965647971 @default.
- W1965647971 citedByCount "1" @default.
- W1965647971 crossrefType "journal-article" @default.
- W1965647971 hasAuthorship W1965647971A5036781157 @default.
- W1965647971 hasAuthorship W1965647971A5047720470 @default.
- W1965647971 hasAuthorship W1965647971A5060399988 @default.
- W1965647971 hasAuthorship W1965647971A5062844820 @default.
- W1965647971 hasBestOaLocation W19656479712 @default.
- W1965647971 hasConcept C114614502 @default.
- W1965647971 hasConcept C132525143 @default.
- W1965647971 hasConcept C33923547 @default.
- W1965647971 hasConceptScore W1965647971C114614502 @default.
- W1965647971 hasConceptScore W1965647971C132525143 @default.
- W1965647971 hasConceptScore W1965647971C33923547 @default.
- W1965647971 hasIssue "6" @default.
- W1965647971 hasLocation W19656479711 @default.
- W1965647971 hasLocation W19656479712 @default.
- W1965647971 hasOpenAccess W1965647971 @default.
- W1965647971 hasPrimaryLocation W19656479711 @default.
- W1965647971 hasRelatedWork W1587224694 @default.
- W1965647971 hasRelatedWork W1979597421 @default.
- W1965647971 hasRelatedWork W2007980826 @default.
- W1965647971 hasRelatedWork W2061531152 @default.
- W1965647971 hasRelatedWork W2069964982 @default.
- W1965647971 hasRelatedWork W2077600819 @default.
- W1965647971 hasRelatedWork W2911598644 @default.
- W1965647971 hasRelatedWork W3002753104 @default.
- W1965647971 hasRelatedWork W4225152035 @default.
- W1965647971 hasRelatedWork W4245490552 @default.
- W1965647971 hasVolume "59" @default.
- W1965647971 isParatext "false" @default.
- W1965647971 isRetracted "false" @default.
- W1965647971 magId "1965647971" @default.
- W1965647971 workType "article" @default.