Matches in SemOpenAlex for { <https://semopenalex.org/work/W1965656370> ?p ?o ?g. }
- W1965656370 endingPage "22" @default.
- W1965656370 startingPage "9" @default.
- W1965656370 abstract "We present a method to reconstruct the dehydration flux associated with garnet-forming reactions during subduction . Garnet-bearing blueschists from the island of Sifnos, Greece, in the Attic–Cycladic Blueschist Belt are used as a test case to extract information on the timescales of dehydration during subduction. We use garnet growth as a proxy for the net dehydration reaction. Thermodynamic (pseudosection) analysis of a mafic blueschist in this unit (representative of an altered basalt protolith) indicates that garnet grew via net reaction(s) of the form chlorite + chloritoid + glaucophane + phengite = garnet + pyroxene + lawsonite + paragonite + quartz + H 2 O. Garnet core and rim chemistry indicates that growth began at 2.0 GPa and 460 °C and ended at 2.2 GPa and 560 °C. The stabilization of matrix lawsonite (promoted by the bulk chemical shift of the matrix due to fractionation of the garnet and its inclusions from the system) throughout garnet growth limits the amount of water liberated from the rock over this P–T span. The average stoichiometry of the garnet-forming reaction(s) indicates an average molar production ratio of garnet to water of ~ 1.0:0.7. Given the 11 vol.% garnet observed in the rock, this analysis indicates a loss of 0.3 to 0.4 wt.% H 2 O from the bulk rock during garnet growth. Zoned garnet geochronology from these rocks provides a constraint on the dehydration rate from this lithology during the time span of garnet growth. Two garnet grains, roughly 1.5 cm each in diameter, were microdrilled based on major element zoning contours. Three concentric growth zones were extracted from each garnet for Sm–Nd geochronology. Very low Nd concentrations in acid-cleansed garnet (0.03 to 0.09 ppm) yielded very small samples (~ 1 ng Nd) that were analyzed with TIMS using a NdO + with Ta 2 O 5 activator method. Untreated “garnet” powders rich in mineral inclusions from each garnet zone were also analyzed. The powders fall off of the garnet-matrix isochron, likely indicating age inheritance in the inclusions. Combining acid-cleansed garnet data from each garnet, multi-point garnet-matrix isochron ages of 46.50 ± 0.80 Ma for the core, 46.49 ± 0.53 Ma for the intermediate zone, and 46.46 ± 0.59 Ma for the rim were determined, indicating a brief growth duration of 0.04 Ma with an upper bound (2 SD) on growth duration of 1.0 Myr. This equates to a release of 0.3–0.4 wt.% of water due to this reaction in this lithology, and heating of 100 °C, in less than 1.0 Myr. The short time interval represents a focused, rapid pulse of dehydration and heating within the context of the overall subduction descent timescale of ~ 10–20 Myr. ► We present a method to reconstruct dehydration rates in subduction zones. ► Garnet growth duration in a Sifnos blueschist was less than one million years. ► Garnet growth spanned 460 °C and 2.0 GPa to 560 °C and 2.2 GPa during subduction. ► 0.3 to 0.4 wt.% water was released during these garnet forming reactions. ► Significant subduction zone dehydration occurred in a rapid pulse on Sifnos." @default.
- W1965656370 created "2016-06-24" @default.
- W1965656370 creator A5043874643 @default.
- W1965656370 creator A5050386353 @default.
- W1965656370 creator A5053076372 @default.
- W1965656370 creator A5076621150 @default.
- W1965656370 date "2012-07-01" @default.
- W1965656370 modified "2023-09-27" @default.
- W1965656370 title "Using garnet to constrain the duration and rate of water-releasing metamorphic reactions during subduction: An example from Sifnos, Greece" @default.
- W1965656370 cites W1483404647 @default.
- W1965656370 cites W1489332407 @default.
- W1965656370 cites W1507443884 @default.
- W1965656370 cites W1532952932 @default.
- W1965656370 cites W1552757520 @default.
- W1965656370 cites W1587490095 @default.
- W1965656370 cites W1621677047 @default.
- W1965656370 cites W1644176828 @default.
- W1965656370 cites W1658245883 @default.
- W1965656370 cites W1830358639 @default.
- W1965656370 cites W1964599891 @default.
- W1965656370 cites W1965475869 @default.
- W1965656370 cites W1966089316 @default.
- W1965656370 cites W1973196224 @default.
- W1965656370 cites W1973726675 @default.
- W1965656370 cites W1977595825 @default.
- W1965656370 cites W1978317343 @default.
- W1965656370 cites W1978534444 @default.
- W1965656370 cites W1979214544 @default.
- W1965656370 cites W1979520472 @default.
- W1965656370 cites W1981288344 @default.
- W1965656370 cites W1982998980 @default.
- W1965656370 cites W1983298378 @default.
- W1965656370 cites W1989185989 @default.
- W1965656370 cites W1992212136 @default.
- W1965656370 cites W1995119550 @default.
- W1965656370 cites W1995314866 @default.
- W1965656370 cites W1998707404 @default.
- W1965656370 cites W2003610695 @default.
- W1965656370 cites W2007170137 @default.
- W1965656370 cites W2008168724 @default.
- W1965656370 cites W2008790258 @default.
- W1965656370 cites W2017649324 @default.
- W1965656370 cites W2025764580 @default.
- W1965656370 cites W2030259352 @default.
- W1965656370 cites W2030368461 @default.
- W1965656370 cites W2038937881 @default.
- W1965656370 cites W2039817695 @default.
- W1965656370 cites W2040012572 @default.
- W1965656370 cites W2040549377 @default.
- W1965656370 cites W2041895575 @default.
- W1965656370 cites W2042250529 @default.
- W1965656370 cites W2049035851 @default.
- W1965656370 cites W2049426455 @default.
- W1965656370 cites W2050842650 @default.
- W1965656370 cites W2057408414 @default.
- W1965656370 cites W2070015838 @default.
- W1965656370 cites W2070776398 @default.
- W1965656370 cites W2071369893 @default.
- W1965656370 cites W2071583796 @default.
- W1965656370 cites W2081723971 @default.
- W1965656370 cites W2085214265 @default.
- W1965656370 cites W2085427688 @default.
- W1965656370 cites W2086163800 @default.
- W1965656370 cites W2092719723 @default.
- W1965656370 cites W2093846115 @default.
- W1965656370 cites W2093892931 @default.
- W1965656370 cites W2096682995 @default.
- W1965656370 cites W2100618503 @default.
- W1965656370 cites W2103019984 @default.
- W1965656370 cites W2108982831 @default.
- W1965656370 cites W2114508111 @default.
- W1965656370 cites W2114830814 @default.
- W1965656370 cites W2115218846 @default.
- W1965656370 cites W2117028959 @default.
- W1965656370 cites W2118172271 @default.
- W1965656370 cites W2124139363 @default.
- W1965656370 cites W2127770462 @default.
- W1965656370 cites W2130281340 @default.
- W1965656370 cites W2130816171 @default.
- W1965656370 cites W2135594572 @default.
- W1965656370 cites W2138828617 @default.
- W1965656370 cites W2139085903 @default.
- W1965656370 cites W2139654255 @default.
- W1965656370 cites W2140909098 @default.
- W1965656370 cites W2146329830 @default.
- W1965656370 cites W2149243499 @default.
- W1965656370 cites W2154720561 @default.
- W1965656370 cites W2154879895 @default.
- W1965656370 cites W2155773363 @default.
- W1965656370 cites W2162311678 @default.
- W1965656370 cites W2168860807 @default.
- W1965656370 cites W2317079159 @default.
- W1965656370 cites W2344010396 @default.
- W1965656370 cites W2502729337 @default.
- W1965656370 cites W2524062519 @default.
- W1965656370 cites W2023235237 @default.
- W1965656370 doi "https://doi.org/10.1016/j.chemgeo.2012.04.016" @default.
- W1965656370 hasPublicationYear "2012" @default.