Matches in SemOpenAlex for { <https://semopenalex.org/work/W1965660852> ?p ?o ?g. }
- W1965660852 abstract "The theory of singular local perturbations of translation invariant positivity preserving semigroups on L2(R, dx) is developed. A powerful approximation theorem is proved which allows the treatment of a very general class of singular perturbations. Estimates on the local singularities of the kernels of the semigroups, e~'H, are given. Eigenfunction expansions are derived. The local singularities of the eigenfunction and generalized eigenfunctions are discussed. Results are illustrated with examples involving singular perturbations of —A. I. Introduction. The sum of an operator, //0, which generates a positivity preserving translation invariant semigroup on L2(RN, dNx) and a potential V is the subject of the present work. In §11 the class of such H0's is discussed more fully. Here we only remark that the operators corresponding to nonrel- ativistic and relativistic energy in quantum mechanics are included. The potentials considered are, in general, too singular to be operators and are given as forms, so that H0 + V must be defined as a form sum. A detailed description of the potentials is given in §111 and IV. The success of the perturbation program for the investigation of operator sums is impressive (20). For form sums such an analysis is more difficult because functions of forms are generally undefined. One technique for analyzing functions,/, of H0 + V is to: (1) approximate Kby bounded functions V; (2) show f(H0 + approximates/(//0 + V); and (3) analyze f(H0 + V) by (2) and a direct analysis of f(H0 + V). Such a procedure for (1) and (2) was developed by Kato (20) and Faris (10), using/(x) = (x + X)-1. It employs monotone convergence arguments and so is applicable only when the potential V can be written as the sum of a rather general nonnegative function V+ and a nonpositive function V_ which is a small form perturbation of H0. One truncates V+ and K_ to obtain functions V+ n and V_ which are absolutely bounded by the integer n. Then, for all" @default.
- W1965660852 created "2016-06-24" @default.
- W1965660852 creator A5018846274 @default.
- W1965660852 creator A5031616439 @default.
- W1965660852 date "1978-01-01" @default.
- W1965660852 modified "2023-09-23" @default.
- W1965660852 title "Perturbation of translation invariant positivity preserving semigroups on $Lsp{2}({bf R}sp{N})$" @default.
- W1965660852 cites W1488877410 @default.
- W1965660852 cites W1496126359 @default.
- W1965660852 cites W1533055209 @default.
- W1965660852 cites W1570792531 @default.
- W1965660852 cites W1575147392 @default.
- W1965660852 cites W1980177919 @default.
- W1965660852 cites W1988003560 @default.
- W1965660852 cites W1989646216 @default.
- W1965660852 cites W1989760005 @default.
- W1965660852 cites W1991492450 @default.
- W1965660852 cites W2012073040 @default.
- W1965660852 cites W2025094856 @default.
- W1965660852 cites W2031170774 @default.
- W1965660852 cites W2046030515 @default.
- W1965660852 cites W2046101549 @default.
- W1965660852 cites W2062422443 @default.
- W1965660852 cites W2076162493 @default.
- W1965660852 cites W2088770081 @default.
- W1965660852 cites W2093701445 @default.
- W1965660852 cites W2117083307 @default.
- W1965660852 cites W2150358749 @default.
- W1965660852 cites W2154106338 @default.
- W1965660852 cites W2160330364 @default.
- W1965660852 cites W2322091001 @default.
- W1965660852 cites W2322480514 @default.
- W1965660852 cites W2325043349 @default.
- W1965660852 cites W2328787678 @default.
- W1965660852 cites W2333571776 @default.
- W1965660852 cites W2751862591 @default.
- W1965660852 cites W2887692241 @default.
- W1965660852 cites W28941298 @default.
- W1965660852 cites W3035162019 @default.
- W1965660852 cites W3038830718 @default.
- W1965660852 cites W3139823826 @default.
- W1965660852 cites W5570479 @default.
- W1965660852 cites W67014698 @default.
- W1965660852 cites W1986119538 @default.
- W1965660852 cites W2072081265 @default.
- W1965660852 doi "https://doi.org/10.1090/s0002-9947-1978-0470750-2" @default.
- W1965660852 hasPublicationYear "1978" @default.
- W1965660852 type Work @default.
- W1965660852 sameAs 1965660852 @default.
- W1965660852 citedByCount "23" @default.
- W1965660852 countsByYear W19656608522014 @default.
- W1965660852 countsByYear W19656608522015 @default.
- W1965660852 countsByYear W19656608522016 @default.
- W1965660852 countsByYear W19656608522017 @default.
- W1965660852 countsByYear W19656608522020 @default.
- W1965660852 crossrefType "journal-article" @default.
- W1965660852 hasAuthorship W1965660852A5018846274 @default.
- W1965660852 hasAuthorship W1965660852A5031616439 @default.
- W1965660852 hasBestOaLocation W19656608521 @default.
- W1965660852 hasConcept C104317684 @default.
- W1965660852 hasConcept C121332964 @default.
- W1965660852 hasConcept C12843 @default.
- W1965660852 hasConcept C128803854 @default.
- W1965660852 hasConcept C134306372 @default.
- W1965660852 hasConcept C158448853 @default.
- W1965660852 hasConcept C158693339 @default.
- W1965660852 hasConcept C17020691 @default.
- W1965660852 hasConcept C177918212 @default.
- W1965660852 hasConcept C185592680 @default.
- W1965660852 hasConcept C190470478 @default.
- W1965660852 hasConcept C202444582 @default.
- W1965660852 hasConcept C207405024 @default.
- W1965660852 hasConcept C33923547 @default.
- W1965660852 hasConcept C34388435 @default.
- W1965660852 hasConcept C37914503 @default.
- W1965660852 hasConcept C55493867 @default.
- W1965660852 hasConcept C62520636 @default.
- W1965660852 hasConcept C86339819 @default.
- W1965660852 hasConceptScore W1965660852C104317684 @default.
- W1965660852 hasConceptScore W1965660852C121332964 @default.
- W1965660852 hasConceptScore W1965660852C12843 @default.
- W1965660852 hasConceptScore W1965660852C128803854 @default.
- W1965660852 hasConceptScore W1965660852C134306372 @default.
- W1965660852 hasConceptScore W1965660852C158448853 @default.
- W1965660852 hasConceptScore W1965660852C158693339 @default.
- W1965660852 hasConceptScore W1965660852C17020691 @default.
- W1965660852 hasConceptScore W1965660852C177918212 @default.
- W1965660852 hasConceptScore W1965660852C185592680 @default.
- W1965660852 hasConceptScore W1965660852C190470478 @default.
- W1965660852 hasConceptScore W1965660852C202444582 @default.
- W1965660852 hasConceptScore W1965660852C207405024 @default.
- W1965660852 hasConceptScore W1965660852C33923547 @default.
- W1965660852 hasConceptScore W1965660852C34388435 @default.
- W1965660852 hasConceptScore W1965660852C37914503 @default.
- W1965660852 hasConceptScore W1965660852C55493867 @default.
- W1965660852 hasConceptScore W1965660852C62520636 @default.
- W1965660852 hasConceptScore W1965660852C86339819 @default.
- W1965660852 hasLocation W19656608521 @default.
- W1965660852 hasOpenAccess W1965660852 @default.
- W1965660852 hasPrimaryLocation W19656608521 @default.