Matches in SemOpenAlex for { <https://semopenalex.org/work/W1965897466> ?p ?o ?g. }
- W1965897466 endingPage "305" @default.
- W1965897466 startingPage "291" @default.
- W1965897466 abstract "AME Aquatic Microbial Ecology Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsSpecials AME 61:291-305 (2010) - DOI: https://doi.org/10.3354/ame01446 AME Special 4: Progress and perspectives in aquatic microbial ecology: Highlights of the SAME 11, Piran, Slovenia, 2009 Effect of ocean acidification on microbial diversity and on microbe-driven biogeochemistry and ecosystem functioning Jinwen Liu1,2,3, Markus G. Weinbauer1,2, Cornelia Maier1,2, Minhan Dai3, Jean-Pierre Gattuso1,2,* 1INSU-CNRS, Laboratoire d'Océanographie de Villefranche, BP 28, 06234 Villefranche-sur-mer Cedex, France 2Université Pierre et Marie Curie, Observatoire Océanologique de Villefranche, 06230 Villefranche-sur-mer, France 3State Key Laboratory of Marine Environmental Science, Xiamen University, 361005 Xiamen, China *Corresponding author. Email: gattuso@obs-vlfr.fr ABSTRACT: The ocean absorbs about 25% of anthropogenic CO2 emissions, which alters its chemistry. Among the changes of the carbonate system are an increase in the partial pressure of CO2 (pCO2) and a decline of pH; hence, the whole process is often referred to as 'ocean acidification'. Many microbial processes can be affected either directly or indirectly via a cascade of effects through the response of non-microbial groups and/or through changes in seawater chemistry. We briefly review the current understanding of the impact of ocean acidification on microbial diversity and processes, and highlight the gaps that need to be addressed in future research. The focus is on Bacteria, Archaea, viruses and protistan grazers but also includes total primary production of phytoplankton as well as species composition of eukaryotic phytoplankton. Some species and communities exhibit increased primary production at elevated pCO2. In contrast to their heterocystous counterparts, nitrogen fixation by non-heterocystous cyanobacteria is stimulated by elevated pCO2. The experimental data on the response of prokaryotic production to ocean acidification are not consistent. Very few other microbial processes have been investigated at environmentally relevant pH levels. The potential for microbes to adapt to ocean acidification, at either the species level by genetic change or at the community level through the replacement of sensitive species or groups by non- or less sensitive ones, is completely unknown. Consequently, the impact of ocean acidification on keystone species and microbial diversity needs to be elucidated. Most experiments used a short-term perturbation approach by using cultured organisms; few were conducted in mesocosms and none in situ. There is likely a lot to be learned from observations in areas naturally enriched with CO2, such as vents, upwelling and near-shore areas. KEY WORDS: Ocean acidification · Microbial diversity · Microbe · Bacteria · Phytoplankton · Viruses á Biogeochemistry · Meta-analysis Full text in pdf format PreviousCite this article as: Liu J, Weinbauer MG, Maier C, Dai M, Gattuso JP (2010) Effect of ocean acidification on microbial diversity and on microbe-driven biogeochemistry and ecosystem functioning. Aquat Microb Ecol 61:291-305. https://doi.org/10.3354/ame01446 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in AME Vol. 61, No. 3. Online publication date: December 30, 2010 Print ISSN: 0948-3055; Online ISSN: 1616-1564 Copyright © 2010 Inter-Research." @default.
- W1965897466 created "2016-06-24" @default.
- W1965897466 creator A5000330733 @default.
- W1965897466 creator A5009172238 @default.
- W1965897466 creator A5057739867 @default.
- W1965897466 creator A5068370232 @default.
- W1965897466 creator A5079156035 @default.
- W1965897466 date "2010-12-30" @default.
- W1965897466 modified "2023-09-30" @default.
- W1965897466 title "Effect of ocean acidification on microbial diversity and on microbe-driven biogeochemistry and ecosystem functioning" @default.
- W1965897466 cites W1533417007 @default.
- W1965897466 cites W1538342514 @default.
- W1965897466 cites W1567919582 @default.
- W1965897466 cites W1596587744 @default.
- W1965897466 cites W1609151816 @default.
- W1965897466 cites W1681234379 @default.
- W1965897466 cites W1850991928 @default.
- W1965897466 cites W1968206284 @default.
- W1965897466 cites W1971945883 @default.
- W1965897466 cites W1973842094 @default.
- W1965897466 cites W1974974265 @default.
- W1965897466 cites W1978886837 @default.
- W1965897466 cites W1983222196 @default.
- W1965897466 cites W1985544238 @default.
- W1965897466 cites W2009065401 @default.
- W1965897466 cites W2010770761 @default.
- W1965897466 cites W2017062725 @default.
- W1965897466 cites W2023770088 @default.
- W1965897466 cites W2023790409 @default.
- W1965897466 cites W2028381027 @default.
- W1965897466 cites W2033261609 @default.
- W1965897466 cites W2034437607 @default.
- W1965897466 cites W2043233032 @default.
- W1965897466 cites W2045381798 @default.
- W1965897466 cites W2047986616 @default.
- W1965897466 cites W2050103984 @default.
- W1965897466 cites W2052439360 @default.
- W1965897466 cites W2057344075 @default.
- W1965897466 cites W2060012482 @default.
- W1965897466 cites W2062173590 @default.
- W1965897466 cites W2065687701 @default.
- W1965897466 cites W2070883331 @default.
- W1965897466 cites W2073274235 @default.
- W1965897466 cites W2084278313 @default.
- W1965897466 cites W2087671769 @default.
- W1965897466 cites W2095948591 @default.
- W1965897466 cites W2100575191 @default.
- W1965897466 cites W2103746138 @default.
- W1965897466 cites W2106290100 @default.
- W1965897466 cites W2107133645 @default.
- W1965897466 cites W2108422697 @default.
- W1965897466 cites W2109593913 @default.
- W1965897466 cites W2112651165 @default.
- W1965897466 cites W2112828596 @default.
- W1965897466 cites W2113297575 @default.
- W1965897466 cites W2114141641 @default.
- W1965897466 cites W2119911888 @default.
- W1965897466 cites W2122938469 @default.
- W1965897466 cites W2128025040 @default.
- W1965897466 cites W2129450594 @default.
- W1965897466 cites W2129626599 @default.
- W1965897466 cites W2130734877 @default.
- W1965897466 cites W2132411129 @default.
- W1965897466 cites W2133871521 @default.
- W1965897466 cites W2135821405 @default.
- W1965897466 cites W2137096021 @default.
- W1965897466 cites W2137442207 @default.
- W1965897466 cites W2138289353 @default.
- W1965897466 cites W2144624514 @default.
- W1965897466 cites W2145029298 @default.
- W1965897466 cites W2146781112 @default.
- W1965897466 cites W2148632523 @default.
- W1965897466 cites W2149545078 @default.
- W1965897466 cites W2152620363 @default.
- W1965897466 cites W2154418952 @default.
- W1965897466 cites W2156858238 @default.
- W1965897466 cites W2158544131 @default.
- W1965897466 cites W2160696268 @default.
- W1965897466 cites W2162051751 @default.
- W1965897466 cites W2163041825 @default.
- W1965897466 cites W2165440152 @default.
- W1965897466 cites W2165481324 @default.
- W1965897466 cites W2166082026 @default.
- W1965897466 cites W2168062665 @default.
- W1965897466 cites W2169277573 @default.
- W1965897466 cites W2170540572 @default.
- W1965897466 cites W2257766501 @default.
- W1965897466 cites W2292778512 @default.
- W1965897466 cites W239848632 @default.
- W1965897466 cites W71228264 @default.
- W1965897466 cites W2226176152 @default.
- W1965897466 doi "https://doi.org/10.3354/ame01446" @default.
- W1965897466 hasPublicationYear "2010" @default.
- W1965897466 type Work @default.
- W1965897466 sameAs 1965897466 @default.
- W1965897466 citedByCount "157" @default.
- W1965897466 countsByYear W19658974662012 @default.
- W1965897466 countsByYear W19658974662013 @default.