Matches in SemOpenAlex for { <https://semopenalex.org/work/W1965963232> ?p ?o ?g. }
- W1965963232 endingPage "78" @default.
- W1965963232 startingPage "64" @default.
- W1965963232 abstract "In the Web 2.0 era, a huge number of media data, such as text, image/video, and social interaction information, have been generated on the social media sites (e.g., Facebook, Google, Flickr, and YouTube). These media data can be effectively adopted for many applications (e.g., image/video annotation, image/video retrieval, and event classification) in multimedia. However, it is difficult to design an effective feature representation to describe these data because they have multi-modal property (e.g., text, image, video, and audio) and multi-domain property (e.g., Flickr, Google, and YouTube). To deal with these issues, we propose a novel cross-domain feature learning (CDFL) algorithm based on stacked denoising auto-encoders. By introducing the modal correlation constraint and the cross-domain constraint in conventional auto-encoder, our CDFL can maximize the correlations among different modalities and extract domain invariant semantic features simultaneously. To evaluate our CDFL algorithm , we apply it to three important applications: sentiment classification, spam filtering, and event classification. Comprehensive evaluations demonstrate the encouraging performance of the proposed approach." @default.
- W1965963232 created "2016-06-24" @default.
- W1965963232 creator A5022636178 @default.
- W1965963232 creator A5024417199 @default.
- W1965963232 creator A5083991825 @default.
- W1965963232 date "2015-01-01" @default.
- W1965963232 modified "2023-10-16" @default.
- W1965963232 title "Cross-Domain Feature Learning in Multimedia" @default.
- W1965963232 cites W1588334334 @default.
- W1965963232 cites W1647376582 @default.
- W1965963232 cites W1978394996 @default.
- W1965963232 cites W1981613567 @default.
- W1965963232 cites W1998156381 @default.
- W1965963232 cites W2006593672 @default.
- W1965963232 cites W2009557755 @default.
- W1965963232 cites W2019288369 @default.
- W1965963232 cites W2022146075 @default.
- W1965963232 cites W2025768430 @default.
- W1965963232 cites W2034692798 @default.
- W1965963232 cites W2064447488 @default.
- W1965963232 cites W2071983208 @default.
- W1965963232 cites W2072117168 @default.
- W1965963232 cites W2073190439 @default.
- W1965963232 cites W2096943734 @default.
- W1965963232 cites W2098355853 @default.
- W1965963232 cites W2100235303 @default.
- W1965963232 cites W2106277773 @default.
- W1965963232 cites W2113462496 @default.
- W1965963232 cites W2120750550 @default.
- W1965963232 cites W2122217324 @default.
- W1965963232 cites W2129706758 @default.
- W1965963232 cites W2136922672 @default.
- W1965963232 cites W2143570397 @default.
- W1965963232 cites W2145793004 @default.
- W1965963232 cites W2151103935 @default.
- W1965963232 cites W2151751257 @default.
- W1965963232 cites W2158108973 @default.
- W1965963232 cites W2159570078 @default.
- W1965963232 cites W2162915993 @default.
- W1965963232 cites W2164943005 @default.
- W1965963232 cites W2165612380 @default.
- W1965963232 cites W2165698076 @default.
- W1965963232 cites W2168671440 @default.
- W1965963232 cites W4231109964 @default.
- W1965963232 cites W83931563 @default.
- W1965963232 doi "https://doi.org/10.1109/tmm.2014.2375793" @default.
- W1965963232 hasPublicationYear "2015" @default.
- W1965963232 type Work @default.
- W1965963232 sameAs 1965963232 @default.
- W1965963232 citedByCount "111" @default.
- W1965963232 countsByYear W19659632322013 @default.
- W1965963232 countsByYear W19659632322015 @default.
- W1965963232 countsByYear W19659632322016 @default.
- W1965963232 countsByYear W19659632322017 @default.
- W1965963232 countsByYear W19659632322018 @default.
- W1965963232 countsByYear W19659632322019 @default.
- W1965963232 countsByYear W19659632322020 @default.
- W1965963232 countsByYear W19659632322021 @default.
- W1965963232 countsByYear W19659632322022 @default.
- W1965963232 countsByYear W19659632322023 @default.
- W1965963232 crossrefType "journal-article" @default.
- W1965963232 hasAuthorship W1965963232A5022636178 @default.
- W1965963232 hasAuthorship W1965963232A5024417199 @default.
- W1965963232 hasAuthorship W1965963232A5083991825 @default.
- W1965963232 hasConcept C111472728 @default.
- W1965963232 hasConcept C111919701 @default.
- W1965963232 hasConcept C118505674 @default.
- W1965963232 hasConcept C134306372 @default.
- W1965963232 hasConcept C136764020 @default.
- W1965963232 hasConcept C138885662 @default.
- W1965963232 hasConcept C154945302 @default.
- W1965963232 hasConcept C189950617 @default.
- W1965963232 hasConcept C23123220 @default.
- W1965963232 hasConcept C2776401178 @default.
- W1965963232 hasConcept C33923547 @default.
- W1965963232 hasConcept C36503486 @default.
- W1965963232 hasConcept C41008148 @default.
- W1965963232 hasConcept C41895202 @default.
- W1965963232 hasConcept C49774154 @default.
- W1965963232 hasConcept C518677369 @default.
- W1965963232 hasConcept C52622490 @default.
- W1965963232 hasConcept C59404180 @default.
- W1965963232 hasConceptScore W1965963232C111472728 @default.
- W1965963232 hasConceptScore W1965963232C111919701 @default.
- W1965963232 hasConceptScore W1965963232C118505674 @default.
- W1965963232 hasConceptScore W1965963232C134306372 @default.
- W1965963232 hasConceptScore W1965963232C136764020 @default.
- W1965963232 hasConceptScore W1965963232C138885662 @default.
- W1965963232 hasConceptScore W1965963232C154945302 @default.
- W1965963232 hasConceptScore W1965963232C189950617 @default.
- W1965963232 hasConceptScore W1965963232C23123220 @default.
- W1965963232 hasConceptScore W1965963232C2776401178 @default.
- W1965963232 hasConceptScore W1965963232C33923547 @default.
- W1965963232 hasConceptScore W1965963232C36503486 @default.
- W1965963232 hasConceptScore W1965963232C41008148 @default.
- W1965963232 hasConceptScore W1965963232C41895202 @default.
- W1965963232 hasConceptScore W1965963232C49774154 @default.
- W1965963232 hasConceptScore W1965963232C518677369 @default.