Matches in SemOpenAlex for { <https://semopenalex.org/work/W1966006812> ?p ?o ?g. }
- W1966006812 endingPage "426" @default.
- W1966006812 startingPage "415" @default.
- W1966006812 abstract "Objectives Phytochemical-mediated modulation of cytochrome P450 (CYP) activity may underlie many herb-drug interactions. Single-time point phenotypic metabolic ratios were used to determine whether long-term supplementation of goldenseal (Hydrastis canadensis), black cohosh (Cimicifuga racemosa), kava kava (Piper methysticum), or valerian (Valeriana officinalis) extracts affected CYP1A2, CYP2D6, CYP2E1, or CYP3A4/5 activity. Methods Twelve healthy volunteers (6 women) were randomly assigned to receive goldenseal, black cohosh, kava kava, or valerian for 28 days. For each subject, a 30-day washout period was interposed between each supplementation phase. Probe drug cocktails of midazolam and caffeine, followed 24 hours later by chlorzoxazone and debrisoquin (INN, debrisoquine), were administered before (baseline) and at the end of supplementation. Presupplementation and postsupplementation phenotypic trait measurements were determined for CYP3A4/5, CYP1A2, CYP2E1, and CYP2D6 by use of 1-hydroxymidazolam/midazolam serum ratios (1-hour sample), paraxanthine/caffeine serum ratios (6-hour sample), 6-hydroxychlorzoxazone/chlorzoxazone serum ratios (2-hour sample), and debrisoquin urinary recovery ratios (8-hour collection), respectively. The content of purported “active” phytochemicals was determined for each supplement. Results Comparisons of presupplementation and postsupplementation phenotypic ratio means revealed significant inhibition (approximately 40%) of CYP2D6 (difference, −0.228; 95% confidence interval [CI], −0.268 to −0.188) and CYP3A4/5 (difference, −1.501; 95% CI, −1.840 to −1.163) activity for goldenseal. Kava produced significant reductions (approximately 40%) in CYP2E1 only (difference, −0.192; 95% CI, −0.325 to −0.060). Black cohosh also exhibited statistically significant inhibition of CYP2D6 (difference, −0.046; 95% CI, −0.085 to −0.007), but the magnitude of the effect (approximately 7%) did not appear to be clinically relevant. No significant changes in phenotypic ratios were observed for valerian. Conclusions Botanical supplements containing goldenseal strongly inhibited CYP2D6 and CYP3A4/5 activity in vivo, whereas kava inhibited CYP2E1 and black cohosh weakly inhibited CYP2D6. Accordingly, serious adverse interactions may result from the concomitant ingestion of goldenseal supplements and drugs that are CYP2D6 and CYP3A4/5 substrates. Kava kava and black cohosh may interact with CYP2E1 and CYP2D6 substrates, respectively. Valerian appears to be less likely to produce CYP-mediated herb-drug interactions. Clinical Pharmacology & Therapeutics (2005) 77, 415–426; doi: 10.1016/j.clpt.2005.01.009" @default.
- W1966006812 created "2016-06-24" @default.
- W1966006812 creator A5004340506 @default.
- W1966006812 creator A5008073938 @default.
- W1966006812 creator A5022837135 @default.
- W1966006812 creator A5027251539 @default.
- W1966006812 creator A5056382394 @default.
- W1966006812 creator A5066447332 @default.
- W1966006812 creator A5082717785 @default.
- W1966006812 date "2005-05-01" @default.
- W1966006812 modified "2023-10-15" @default.
- W1966006812 title "In vivo effects of goldenseal, kava kava, black cohosh, and valerian on human cytochrome P450 1A2, 2D6, 2E1, and 3A4/5 phenotypes" @default.
- W1966006812 cites W130491231 @default.
- W1966006812 cites W1520418202 @default.
- W1966006812 cites W174314275 @default.
- W1966006812 cites W1785872465 @default.
- W1966006812 cites W181308150 @default.
- W1966006812 cites W1965610744 @default.
- W1966006812 cites W1968130270 @default.
- W1966006812 cites W1973195425 @default.
- W1966006812 cites W1973604257 @default.
- W1966006812 cites W1977746129 @default.
- W1966006812 cites W1980552125 @default.
- W1966006812 cites W1983208188 @default.
- W1966006812 cites W1984561836 @default.
- W1966006812 cites W1988667204 @default.
- W1966006812 cites W1992250421 @default.
- W1966006812 cites W1994847018 @default.
- W1966006812 cites W1997253394 @default.
- W1966006812 cites W1998266209 @default.
- W1966006812 cites W1999014683 @default.
- W1966006812 cites W2000124234 @default.
- W1966006812 cites W2006084435 @default.
- W1966006812 cites W2008263033 @default.
- W1966006812 cites W2009640080 @default.
- W1966006812 cites W2026240272 @default.
- W1966006812 cites W2030006375 @default.
- W1966006812 cites W2030777922 @default.
- W1966006812 cites W2048459638 @default.
- W1966006812 cites W2050205176 @default.
- W1966006812 cites W2053371499 @default.
- W1966006812 cites W2056894910 @default.
- W1966006812 cites W2060004662 @default.
- W1966006812 cites W2061913723 @default.
- W1966006812 cites W2069105611 @default.
- W1966006812 cites W2072950367 @default.
- W1966006812 cites W2076985436 @default.
- W1966006812 cites W2080229353 @default.
- W1966006812 cites W2082150156 @default.
- W1966006812 cites W2085592828 @default.
- W1966006812 cites W2097269715 @default.
- W1966006812 cites W2097544991 @default.
- W1966006812 cites W2102664366 @default.
- W1966006812 cites W2104487496 @default.
- W1966006812 cites W2123378758 @default.
- W1966006812 cites W2132806259 @default.
- W1966006812 cites W2134981275 @default.
- W1966006812 cites W2138020718 @default.
- W1966006812 cites W2149551816 @default.
- W1966006812 cites W2152948824 @default.
- W1966006812 cites W2166986826 @default.
- W1966006812 cites W2189001264 @default.
- W1966006812 cites W2409429227 @default.
- W1966006812 cites W2416117906 @default.
- W1966006812 cites W3004591012 @default.
- W1966006812 cites W4233719326 @default.
- W1966006812 cites W4255398729 @default.
- W1966006812 cites W4297820854 @default.
- W1966006812 doi "https://doi.org/10.1016/j.clpt.2005.01.009" @default.
- W1966006812 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1894911" @default.
- W1966006812 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15900287" @default.
- W1966006812 hasPublicationYear "2005" @default.
- W1966006812 type Work @default.
- W1966006812 sameAs 1966006812 @default.
- W1966006812 citedByCount "242" @default.
- W1966006812 countsByYear W19660068122012 @default.
- W1966006812 countsByYear W19660068122013 @default.
- W1966006812 countsByYear W19660068122014 @default.
- W1966006812 countsByYear W19660068122015 @default.
- W1966006812 countsByYear W19660068122016 @default.
- W1966006812 countsByYear W19660068122017 @default.
- W1966006812 countsByYear W19660068122018 @default.
- W1966006812 countsByYear W19660068122019 @default.
- W1966006812 countsByYear W19660068122020 @default.
- W1966006812 countsByYear W19660068122021 @default.
- W1966006812 countsByYear W19660068122022 @default.
- W1966006812 countsByYear W19660068122023 @default.
- W1966006812 crossrefType "journal-article" @default.
- W1966006812 hasAuthorship W1966006812A5004340506 @default.
- W1966006812 hasAuthorship W1966006812A5008073938 @default.
- W1966006812 hasAuthorship W1966006812A5022837135 @default.
- W1966006812 hasAuthorship W1966006812A5027251539 @default.
- W1966006812 hasAuthorship W1966006812A5056382394 @default.
- W1966006812 hasAuthorship W1966006812A5066447332 @default.
- W1966006812 hasAuthorship W1966006812A5082717785 @default.
- W1966006812 hasBestOaLocation W19660068122 @default.
- W1966006812 hasConcept C126322002 @default.
- W1966006812 hasConcept C140027455 @default.