Matches in SemOpenAlex for { <https://semopenalex.org/work/W1966021193> ?p ?o ?g. }
- W1966021193 endingPage "327" @default.
- W1966021193 startingPage "313" @default.
- W1966021193 abstract "CRM gains increasing importance due to intensive competition and saturated markets. With the purpose of retaining customers, academics as well as practitioners find it crucial to build a churn prediction model that is as accurate as possible. This study applies support vector machines in a newspaper subscription context in order to construct a churn model with a higher predictive performance. Moreover, a comparison is made between two parameter-selection techniques, needed to implement support vector machines. Both techniques are based on grid search and cross-validation. Afterwards, the predictive performance of both kinds of support vector machine models is benchmarked to logistic regression and random forests. Our study shows that support vector machines show good generalization performance when applied to noisy marketing data. Nevertheless, the parameter optimization procedure plays an important role in the predictive performance. We show that only when the optimal parameter-selection procedure is applied, support vector machines outperform traditional logistic regression, whereas random forests outperform both kinds of support vector machines. As a substantive contribution, an overview of the most important churn drivers is given. Unlike ample research, monetary value and frequency do not play an important role in explaining churn in this subscription-services application. Even though most important churn predictors belong to the category of variables describing the subscription, the influence of several client/company-interaction variables cannot be neglected." @default.
- W1966021193 created "2016-06-24" @default.
- W1966021193 creator A5026810106 @default.
- W1966021193 creator A5074562924 @default.
- W1966021193 date "2008-01-01" @default.
- W1966021193 modified "2023-10-16" @default.
- W1966021193 title "Churn prediction in subscription services: An application of support vector machines while comparing two parameter-selection techniques" @default.
- W1966021193 cites W1482807246 @default.
- W1966021193 cites W1537845923 @default.
- W1966021193 cites W1573697334 @default.
- W1966021193 cites W1984755515 @default.
- W1966021193 cites W1990421725 @default.
- W1966021193 cites W2005755239 @default.
- W1966021193 cites W2006153161 @default.
- W1966021193 cites W2011441697 @default.
- W1966021193 cites W2025618885 @default.
- W1966021193 cites W2032740726 @default.
- W1966021193 cites W2032852212 @default.
- W1966021193 cites W2042028018 @default.
- W1966021193 cites W2042961901 @default.
- W1966021193 cites W2060136512 @default.
- W1966021193 cites W2063588929 @default.
- W1966021193 cites W2083833236 @default.
- W1966021193 cites W2115691082 @default.
- W1966021193 cites W2118286367 @default.
- W1966021193 cites W2128830002 @default.
- W1966021193 cites W2135946559 @default.
- W1966021193 cites W2136806966 @default.
- W1966021193 cites W2138123110 @default.
- W1966021193 cites W2139212933 @default.
- W1966021193 cites W2140301981 @default.
- W1966021193 cites W2146289756 @default.
- W1966021193 cites W2157825442 @default.
- W1966021193 cites W2161634631 @default.
- W1966021193 cites W2164274202 @default.
- W1966021193 cites W2165819032 @default.
- W1966021193 cites W2170867720 @default.
- W1966021193 cites W2313319791 @default.
- W1966021193 cites W2328176404 @default.
- W1966021193 cites W2331283804 @default.
- W1966021193 cites W2911964244 @default.
- W1966021193 cites W4213387828 @default.
- W1966021193 cites W4239510810 @default.
- W1966021193 cites W4241849889 @default.
- W1966021193 doi "https://doi.org/10.1016/j.eswa.2006.09.038" @default.
- W1966021193 hasPublicationYear "2008" @default.
- W1966021193 type Work @default.
- W1966021193 sameAs 1966021193 @default.
- W1966021193 citedByCount "368" @default.
- W1966021193 countsByYear W19660211932012 @default.
- W1966021193 countsByYear W19660211932013 @default.
- W1966021193 countsByYear W19660211932014 @default.
- W1966021193 countsByYear W19660211932015 @default.
- W1966021193 countsByYear W19660211932016 @default.
- W1966021193 countsByYear W19660211932017 @default.
- W1966021193 countsByYear W19660211932018 @default.
- W1966021193 countsByYear W19660211932019 @default.
- W1966021193 countsByYear W19660211932020 @default.
- W1966021193 countsByYear W19660211932021 @default.
- W1966021193 countsByYear W19660211932022 @default.
- W1966021193 countsByYear W19660211932023 @default.
- W1966021193 crossrefType "journal-article" @default.
- W1966021193 hasAuthorship W1966021193A5026810106 @default.
- W1966021193 hasAuthorship W1966021193A5074562924 @default.
- W1966021193 hasConcept C119857082 @default.
- W1966021193 hasConcept C12267149 @default.
- W1966021193 hasConcept C124101348 @default.
- W1966021193 hasConcept C134306372 @default.
- W1966021193 hasConcept C151730666 @default.
- W1966021193 hasConcept C151956035 @default.
- W1966021193 hasConcept C154945302 @default.
- W1966021193 hasConcept C169258074 @default.
- W1966021193 hasConcept C177148314 @default.
- W1966021193 hasConcept C199360897 @default.
- W1966021193 hasConcept C2779343474 @default.
- W1966021193 hasConcept C2780801425 @default.
- W1966021193 hasConcept C33923547 @default.
- W1966021193 hasConcept C41008148 @default.
- W1966021193 hasConcept C45804977 @default.
- W1966021193 hasConcept C81917197 @default.
- W1966021193 hasConcept C86803240 @default.
- W1966021193 hasConcept C93959086 @default.
- W1966021193 hasConceptScore W1966021193C119857082 @default.
- W1966021193 hasConceptScore W1966021193C12267149 @default.
- W1966021193 hasConceptScore W1966021193C124101348 @default.
- W1966021193 hasConceptScore W1966021193C134306372 @default.
- W1966021193 hasConceptScore W1966021193C151730666 @default.
- W1966021193 hasConceptScore W1966021193C151956035 @default.
- W1966021193 hasConceptScore W1966021193C154945302 @default.
- W1966021193 hasConceptScore W1966021193C169258074 @default.
- W1966021193 hasConceptScore W1966021193C177148314 @default.
- W1966021193 hasConceptScore W1966021193C199360897 @default.
- W1966021193 hasConceptScore W1966021193C2779343474 @default.
- W1966021193 hasConceptScore W1966021193C2780801425 @default.
- W1966021193 hasConceptScore W1966021193C33923547 @default.
- W1966021193 hasConceptScore W1966021193C41008148 @default.
- W1966021193 hasConceptScore W1966021193C45804977 @default.
- W1966021193 hasConceptScore W1966021193C81917197 @default.