Matches in SemOpenAlex for { <https://semopenalex.org/work/W1966250206> ?p ?o ?g. }
- W1966250206 endingPage "587" @default.
- W1966250206 startingPage "577" @default.
- W1966250206 abstract "Proteins are composed by amino acids, which are created by genes. To understand how different genes interact to create different proteins, we need to model the gene regulatory networks (GRNs) of different organisms. There are different models that attempt to model GRNs. In this paper, we use the popular S-System to model small networks. This model has been solved with different evolutionary computation techniques, which have obtained good results; yet, there are no models that achieve a perfect reconstruction of the network. We implement a variation of particle swarm optimization (PSO), called dissipative PSO (DPSO), to optimize the model; we also research the use of an L1 regularizer and compare it with other evolutionary computing approaches. To the best of our knowledge, neither the DPSO nor L1 optimizer has been jointly used to solve the S-System. We find that the combination of S-System and DPSO offers advantages over previously used methods, and presents promising results for inferencing larger and more complex networks." @default.
- W1966250206 created "2016-06-24" @default.
- W1966250206 creator A5005925953 @default.
- W1966250206 creator A5008309887 @default.
- W1966250206 creator A5038140116 @default.
- W1966250206 date "2013-08-01" @default.
- W1966250206 modified "2023-10-13" @default.
- W1966250206 title "Reverse Engineering of Gene Regulatory Networks Using Dissipative Particle Swarm Optimization" @default.
- W1966250206 cites W1501815954 @default.
- W1966250206 cites W1502529406 @default.
- W1966250206 cites W1581582023 @default.
- W1966250206 cites W1708394971 @default.
- W1966250206 cites W1820051232 @default.
- W1966250206 cites W1989652873 @default.
- W1966250206 cites W1994445384 @default.
- W1966250206 cites W1996264210 @default.
- W1966250206 cites W2004915807 @default.
- W1966250206 cites W2009500762 @default.
- W1966250206 cites W2026188254 @default.
- W1966250206 cites W2048956475 @default.
- W1966250206 cites W2081749411 @default.
- W1966250206 cites W2082614138 @default.
- W1966250206 cites W2100169396 @default.
- W1966250206 cites W2121008927 @default.
- W1966250206 cites W2126874285 @default.
- W1966250206 cites W2128869726 @default.
- W1966250206 cites W2133111499 @default.
- W1966250206 cites W2136559804 @default.
- W1966250206 cites W2138148774 @default.
- W1966250206 cites W2139038704 @default.
- W1966250206 cites W2141239733 @default.
- W1966250206 cites W2143451729 @default.
- W1966250206 cites W2151098983 @default.
- W1966250206 cites W2155205047 @default.
- W1966250206 cites W2158214348 @default.
- W1966250206 cites W2160326314 @default.
- W1966250206 cites W2160533336 @default.
- W1966250206 cites W2166290356 @default.
- W1966250206 cites W2166513470 @default.
- W1966250206 cites W2401866246 @default.
- W1966250206 cites W2611370172 @default.
- W1966250206 doi "https://doi.org/10.1109/tevc.2012.2218610" @default.
- W1966250206 hasPublicationYear "2013" @default.
- W1966250206 type Work @default.
- W1966250206 sameAs 1966250206 @default.
- W1966250206 citedByCount "52" @default.
- W1966250206 countsByYear W19662502062013 @default.
- W1966250206 countsByYear W19662502062014 @default.
- W1966250206 countsByYear W19662502062015 @default.
- W1966250206 countsByYear W19662502062016 @default.
- W1966250206 countsByYear W19662502062017 @default.
- W1966250206 countsByYear W19662502062018 @default.
- W1966250206 countsByYear W19662502062019 @default.
- W1966250206 countsByYear W19662502062020 @default.
- W1966250206 countsByYear W19662502062021 @default.
- W1966250206 countsByYear W19662502062022 @default.
- W1966250206 crossrefType "journal-article" @default.
- W1966250206 hasAuthorship W1966250206A5005925953 @default.
- W1966250206 hasAuthorship W1966250206A5008309887 @default.
- W1966250206 hasAuthorship W1966250206A5038140116 @default.
- W1966250206 hasConcept C104317684 @default.
- W1966250206 hasConcept C105902424 @default.
- W1966250206 hasConcept C11413529 @default.
- W1966250206 hasConcept C119857082 @default.
- W1966250206 hasConcept C121332964 @default.
- W1966250206 hasConcept C122357587 @default.
- W1966250206 hasConcept C126255220 @default.
- W1966250206 hasConcept C150194340 @default.
- W1966250206 hasConcept C154945302 @default.
- W1966250206 hasConcept C181335050 @default.
- W1966250206 hasConcept C33923547 @default.
- W1966250206 hasConcept C41008148 @default.
- W1966250206 hasConcept C45374587 @default.
- W1966250206 hasConcept C54355233 @default.
- W1966250206 hasConcept C62520636 @default.
- W1966250206 hasConcept C67339327 @default.
- W1966250206 hasConcept C85617194 @default.
- W1966250206 hasConcept C86803240 @default.
- W1966250206 hasConcept C99692599 @default.
- W1966250206 hasConceptScore W1966250206C104317684 @default.
- W1966250206 hasConceptScore W1966250206C105902424 @default.
- W1966250206 hasConceptScore W1966250206C11413529 @default.
- W1966250206 hasConceptScore W1966250206C119857082 @default.
- W1966250206 hasConceptScore W1966250206C121332964 @default.
- W1966250206 hasConceptScore W1966250206C122357587 @default.
- W1966250206 hasConceptScore W1966250206C126255220 @default.
- W1966250206 hasConceptScore W1966250206C150194340 @default.
- W1966250206 hasConceptScore W1966250206C154945302 @default.
- W1966250206 hasConceptScore W1966250206C181335050 @default.
- W1966250206 hasConceptScore W1966250206C33923547 @default.
- W1966250206 hasConceptScore W1966250206C41008148 @default.
- W1966250206 hasConceptScore W1966250206C45374587 @default.
- W1966250206 hasConceptScore W1966250206C54355233 @default.
- W1966250206 hasConceptScore W1966250206C62520636 @default.
- W1966250206 hasConceptScore W1966250206C67339327 @default.
- W1966250206 hasConceptScore W1966250206C85617194 @default.
- W1966250206 hasConceptScore W1966250206C86803240 @default.
- W1966250206 hasConceptScore W1966250206C99692599 @default.