Matches in SemOpenAlex for { <https://semopenalex.org/work/W1966265766> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W1966265766 abstract "The representation of language models through stochastic finite state networks offers several attractive features for speech recognition and understanding, including the ease of integration with the algorithms used for acoustic-phonetic decoding. However, the application to real-world problems is difficult because the network sizes grow very large, and their training requires grammatical inference methods. An approach is described that keeps the network size small by avoiding detailed modeling of linguistic constructs not essential for understanding the meaning of sentences. An automatic method for training such networks starting from a corpus of semantically annotated sentences is described. The training procedure learns both the network structure and the rules for generating the semantic representation of sentences. Testing of a 787-word task achieved 92% correct sentence understanding with written input and 72% with continuous speech, speaker-independent, telephone-bandwidth spoken input.< <ETX xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>></ETX>" @default.
- W1966265766 created "2016-06-24" @default.
- W1966265766 creator A5059867401 @default.
- W1966265766 date "1992-01-01" @default.
- W1966265766 modified "2023-09-26" @default.
- W1966265766 title "Automatic training of stochastic finite-state language models for speech understanding" @default.
- W1966265766 cites W1493624771 @default.
- W1966265766 cites W1966812932 @default.
- W1966265766 cites W1980365852 @default.
- W1966265766 cites W1982589563 @default.
- W1966265766 cites W2007080341 @default.
- W1966265766 cites W2035789797 @default.
- W1966265766 cites W2077661372 @default.
- W1966265766 cites W284117277 @default.
- W1966265766 cites W30667139 @default.
- W1966265766 cites W573542678 @default.
- W1966265766 doi "https://doi.org/10.1109/icassp.1992.225944" @default.
- W1966265766 hasPublicationYear "1992" @default.
- W1966265766 type Work @default.
- W1966265766 sameAs 1966265766 @default.
- W1966265766 citedByCount "9" @default.
- W1966265766 crossrefType "proceedings-article" @default.
- W1966265766 hasAuthorship W1966265766A5059867401 @default.
- W1966265766 hasConcept C137293760 @default.
- W1966265766 hasConcept C154945302 @default.
- W1966265766 hasConcept C162324750 @default.
- W1966265766 hasConcept C17744445 @default.
- W1966265766 hasConcept C187736073 @default.
- W1966265766 hasConcept C199539241 @default.
- W1966265766 hasConcept C204321447 @default.
- W1966265766 hasConcept C2776214188 @default.
- W1966265766 hasConcept C2776359362 @default.
- W1966265766 hasConcept C2777530160 @default.
- W1966265766 hasConcept C2780451532 @default.
- W1966265766 hasConcept C28490314 @default.
- W1966265766 hasConcept C41008148 @default.
- W1966265766 hasConcept C94625758 @default.
- W1966265766 hasConceptScore W1966265766C137293760 @default.
- W1966265766 hasConceptScore W1966265766C154945302 @default.
- W1966265766 hasConceptScore W1966265766C162324750 @default.
- W1966265766 hasConceptScore W1966265766C17744445 @default.
- W1966265766 hasConceptScore W1966265766C187736073 @default.
- W1966265766 hasConceptScore W1966265766C199539241 @default.
- W1966265766 hasConceptScore W1966265766C204321447 @default.
- W1966265766 hasConceptScore W1966265766C2776214188 @default.
- W1966265766 hasConceptScore W1966265766C2776359362 @default.
- W1966265766 hasConceptScore W1966265766C2777530160 @default.
- W1966265766 hasConceptScore W1966265766C2780451532 @default.
- W1966265766 hasConceptScore W1966265766C28490314 @default.
- W1966265766 hasConceptScore W1966265766C41008148 @default.
- W1966265766 hasConceptScore W1966265766C94625758 @default.
- W1966265766 hasLocation W19662657661 @default.
- W1966265766 hasOpenAccess W1966265766 @default.
- W1966265766 hasPrimaryLocation W19662657661 @default.
- W1966265766 hasRelatedWork W1603190341 @default.
- W1966265766 hasRelatedWork W1675761333 @default.
- W1966265766 hasRelatedWork W1868583723 @default.
- W1966265766 hasRelatedWork W1877729219 @default.
- W1966265766 hasRelatedWork W1998080077 @default.
- W1966265766 hasRelatedWork W2062652351 @default.
- W1966265766 hasRelatedWork W2065672130 @default.
- W1966265766 hasRelatedWork W2095734449 @default.
- W1966265766 hasRelatedWork W2111596830 @default.
- W1966265766 hasRelatedWork W2121522906 @default.
- W1966265766 hasRelatedWork W2123524045 @default.
- W1966265766 hasRelatedWork W2134436443 @default.
- W1966265766 hasRelatedWork W2139647714 @default.
- W1966265766 hasRelatedWork W2140279531 @default.
- W1966265766 hasRelatedWork W2150882774 @default.
- W1966265766 hasRelatedWork W2153922509 @default.
- W1966265766 hasRelatedWork W2293858598 @default.
- W1966265766 hasRelatedWork W2532003880 @default.
- W1966265766 hasRelatedWork W2539026254 @default.
- W1966265766 hasRelatedWork W2919123506 @default.
- W1966265766 isParatext "false" @default.
- W1966265766 isRetracted "false" @default.
- W1966265766 magId "1966265766" @default.
- W1966265766 workType "article" @default.