Matches in SemOpenAlex for { <https://semopenalex.org/work/W1966277675> ?p ?o ?g. }
- W1966277675 abstract "B migration in Si and Ge matrices raised a vast attention because of its influence on the production of confined, highly p-doped regions, as required by the miniaturization trend. In this scenario, the diffusion of B atoms can take place under severe conditions, often concomitant, such as very large concentration gradients, non-equilibrium point defect density, amorphous-crystalline transition, extrinsic doping level, co-doping, B clusters formation and dissolution, ultra-short high-temperature annealing. In this paper, we review a large amount of experimental work and present our current understanding of the B diffusion mechanism, disentangling concomitant effects and describing the underlying physics. Whatever the matrix, B migration in amorphous (α-) or crystalline (c-) Si, or c-Ge is revealed to be an indirect process, activated by point defects of the hosting medium. In α-Si in the 450-650 °C range, B diffusivity is 5 orders of magnitude higher than in c-Si, with a transient longer than the typical amorphous relaxation time. A quick B precipitation is also evidenced for concentrations larger than 2 × 1020 B/cm3. B migration in α-Si occurs with the creation of a metastable mobile B, jumping between adjacent sites, stimulated by dangling bonds of α-Si whose density is enhanced by B itself (larger B density causes higher B diffusivity). Similar activation energies for migration of B atoms (3.0 eV) and of dangling bonds (2.6 eV) have been extracted. In c-Si, B diffusion is largely affected by the Fermi level position, occurring through the interaction between the negatively charged substitutional B and a self-interstitial (I) in the neutral or doubly positively charged state, if under intrinsic or extrinsic (p-type doping) conditions, respectively. After charge exchanges, the migrating, uncharged BI pair is formed. Under high n-type doping conditions, B diffusion occurs also through the negatively charged BI pair, even if the migration is depressed by Coulomb pairing with n-type dopants. The interplay between B clustering and migration is also modeled, since B diffusion is greatly affected by precipitation. Small (below 1 nm) and relatively large (5-10 nm in size) BI clusters have been identified with different energy barriers for thermal dissolution (3.6 or 4.8 eV, respectively). In c-Ge, B motion is by far less evident than in c-Si, even if the migration mechanism is revealed to be similarly assisted by Is. If Is density is increased well above the equilibrium (as during ion irradiation), B diffusion occurs up to quite large extents and also at relatively low temperatures, disclosing the underlying mechanism. The lower B diffusivity and the larger activation barrier (4.65 eV, rather than 3.45 eV in c-Si) can be explained by the intrinsic shortage of Is in Ge and by their large formation energy. B diffusion can be strongly enhanced with a proper point defect engineering, as achieved with embedded GeO2 nanoclusters, causing at 650 °C a large Is supersaturation. These aspects of B diffusion are presented and discussed, modeling the key role of point defects in the two different matrices." @default.
- W1966277675 created "2016-06-24" @default.
- W1966277675 creator A5012394754 @default.
- W1966277675 creator A5021115563 @default.
- W1966277675 creator A5022757793 @default.
- W1966277675 creator A5041246288 @default.
- W1966277675 creator A5085500043 @default.
- W1966277675 date "2013-01-16" @default.
- W1966277675 modified "2023-10-09" @default.
- W1966277675 title "Mechanisms of boron diffusion in silicon and germanium" @default.
- W1966277675 cites W1963691403 @default.
- W1966277675 cites W1965464118 @default.
- W1966277675 cites W1968754363 @default.
- W1966277675 cites W1970102952 @default.
- W1966277675 cites W1970463987 @default.
- W1966277675 cites W1972324191 @default.
- W1966277675 cites W1973814663 @default.
- W1966277675 cites W1974798342 @default.
- W1966277675 cites W1974844587 @default.
- W1966277675 cites W1976670715 @default.
- W1966277675 cites W1977092232 @default.
- W1966277675 cites W1978458947 @default.
- W1966277675 cites W1980299784 @default.
- W1966277675 cites W1980671011 @default.
- W1966277675 cites W1981209544 @default.
- W1966277675 cites W1981212347 @default.
- W1966277675 cites W1981545888 @default.
- W1966277675 cites W1982939220 @default.
- W1966277675 cites W1984081171 @default.
- W1966277675 cites W1986689758 @default.
- W1966277675 cites W1987749671 @default.
- W1966277675 cites W1988220998 @default.
- W1966277675 cites W1988332769 @default.
- W1966277675 cites W1988475599 @default.
- W1966277675 cites W1989475378 @default.
- W1966277675 cites W1994469278 @default.
- W1966277675 cites W1997084985 @default.
- W1966277675 cites W1997465098 @default.
- W1966277675 cites W1999997812 @default.
- W1966277675 cites W2000336171 @default.
- W1966277675 cites W2001594314 @default.
- W1966277675 cites W2002067961 @default.
- W1966277675 cites W2002162440 @default.
- W1966277675 cites W2002225307 @default.
- W1966277675 cites W2003435840 @default.
- W1966277675 cites W2006212760 @default.
- W1966277675 cites W2011127533 @default.
- W1966277675 cites W2012395578 @default.
- W1966277675 cites W2013084645 @default.
- W1966277675 cites W2013594662 @default.
- W1966277675 cites W2013749437 @default.
- W1966277675 cites W2014004337 @default.
- W1966277675 cites W2018080368 @default.
- W1966277675 cites W2018122941 @default.
- W1966277675 cites W2019976417 @default.
- W1966277675 cites W2021310574 @default.
- W1966277675 cites W2021697157 @default.
- W1966277675 cites W2022127998 @default.
- W1966277675 cites W2022617966 @default.
- W1966277675 cites W2023749474 @default.
- W1966277675 cites W2024763286 @default.
- W1966277675 cites W2026317369 @default.
- W1966277675 cites W2026580570 @default.
- W1966277675 cites W2028311721 @default.
- W1966277675 cites W2029811191 @default.
- W1966277675 cites W2033008827 @default.
- W1966277675 cites W2033071162 @default.
- W1966277675 cites W2034827730 @default.
- W1966277675 cites W2038078524 @default.
- W1966277675 cites W2043242827 @default.
- W1966277675 cites W2043404781 @default.
- W1966277675 cites W2044487163 @default.
- W1966277675 cites W2044814738 @default.
- W1966277675 cites W2045293245 @default.
- W1966277675 cites W2047550087 @default.
- W1966277675 cites W2048653231 @default.
- W1966277675 cites W2050142536 @default.
- W1966277675 cites W2051024068 @default.
- W1966277675 cites W2051888113 @default.
- W1966277675 cites W2052185318 @default.
- W1966277675 cites W2054191380 @default.
- W1966277675 cites W2055084674 @default.
- W1966277675 cites W2055744252 @default.
- W1966277675 cites W2056361744 @default.
- W1966277675 cites W2057701997 @default.
- W1966277675 cites W2058317907 @default.
- W1966277675 cites W2058341783 @default.
- W1966277675 cites W2059013928 @default.
- W1966277675 cites W2059101772 @default.
- W1966277675 cites W2060272438 @default.
- W1966277675 cites W2060421358 @default.
- W1966277675 cites W2062423241 @default.
- W1966277675 cites W2062481900 @default.
- W1966277675 cites W2065418880 @default.
- W1966277675 cites W2065899712 @default.
- W1966277675 cites W2065959780 @default.
- W1966277675 cites W2067491556 @default.
- W1966277675 cites W2069144385 @default.
- W1966277675 cites W2069917357 @default.
- W1966277675 cites W2073515506 @default.