Matches in SemOpenAlex for { <https://semopenalex.org/work/W1966293881> ?p ?o ?g. }
- W1966293881 endingPage "471" @default.
- W1966293881 startingPage "459" @default.
- W1966293881 abstract "Using high precision densimetric and ultrasonic measurements, we have determined, at 25°C, the apparent molar volumes ΦV and the apparent molar compressibilities ΦKS of four nucleic acid duplexes—namely, the DNA duplex, poly(dIdC)poly(dIdC); the RNA duplex, poly(rA)poly(rU); and the two DNA/RNA hybrid duplexes, poly(rA)poly(dT) and poly(dA)poly(rU). Using available fiber diffraction data on these duplexes, we have calculated the molecular volumes as well as the solvent-accessible surface areas of the constituent charged, polar, and nonpolar atomic groups. We found that the hydration properties of these nucleic acid duplexes do not correlate with the extent and the chemical nature of the solvent-exposed surfaces, thereby suggesting a more specific set of duplex–water interactions beyond general solvation effects. A comparative analysis of our volumetric data on the four duplexes, in conjunction with available structural information, suggests the following features of duplex hydration: (a) The four duplexes exhibit different degrees of hydration, in the order poly(dIdC)poly(dIdC) > poly(dGdC)poly(dGdC) > poly(dAdT)poly(dAdT) ≈ poly(dA)poly(dT). (b) Repetitive AT and IC sequences within a duplex are solvated beyond general effects by a spine of hydration in the minor groove, with this sequence-specific water network involving about 8 additional water molecules from the second and, perhaps, even the third hydration layers. (c) Repetitive GC and IC sequences within a duplex are solvated beyond general effects by a “patch of hydration” in the major groove, with this water network involving about 13 additional water molecules from the second and, perhaps, even the third hydration layers. (d) Random sequence, polymeric DNA duplexes, which statistically lack extended regions of repetitive AT, GC, or IC sequences, do not experience such specific enhancements of hydration. Consequently, consistent with our previous observations (T. V. Chalikian, A. P. Sarvazyan, G. E. Plum, and K. J. Breslauer, Biochemistry, 1994, Vol. 33, pp. 2394–2401), duplexes with approximately 50% AT content exhibit the weakest hydration, while an increase or decrease from this AT content causes enhancement of hydration, either due to stronger hydration of the minor groove (an increase in AT content) or due to stronger hydration of the major groove (an increase in GC content). (e) In dilute aqueous solutions, a B-DNA duplex is more hydrated than an A-DNA duplex, a volumetric-based conclusion that is in agreement with previous results obtained on crystals, fibers, and DNA solutions in organic solvent–water mixtures. (f) the A-like, RNA duplex poly(rA)poly(rU) and the structurally similar A-like, hybrid duplex poly(rA)poly(dT), exhibit similar hydration properties, while the structurally distinct A-like, hybrid duplex poly(rA)poly(dT) and non-A-like, hybrid duplex poly(dA)poly(rU) exhibit differential hydration properties, consistent with structural features dictating hydration characteristics. We discuss how volumetric characterizations, in conjunction with structural studies, can be used to describe, define, and resolve the general and sequence/conformation-specific hydration properties of nucleic acid duplexes. © 1999 John Wiley & Sons, Inc. Biopoly 50: 459–471, 1999" @default.
- W1966293881 created "2016-06-24" @default.
- W1966293881 creator A5038399669 @default.
- W1966293881 creator A5055527433 @default.
- W1966293881 creator A5057316262 @default.
- W1966293881 creator A5060529789 @default.
- W1966293881 creator A5089331513 @default.
- W1966293881 date "1999-10-15" @default.
- W1966293881 modified "2023-09-25" @default.
- W1966293881 title "The hydration of nucleic acid duplexes as assessed by a combination of volumetric and structural techniques" @default.
- W1966293881 cites W1503383278 @default.
- W1966293881 cites W1518002808 @default.
- W1966293881 cites W1562468939 @default.
- W1966293881 cites W17208807 @default.
- W1966293881 cites W1964055372 @default.
- W1966293881 cites W1964539657 @default.
- W1966293881 cites W1969169716 @default.
- W1966293881 cites W1975938313 @default.
- W1966293881 cites W1979250244 @default.
- W1966293881 cites W1983656730 @default.
- W1966293881 cites W1985459186 @default.
- W1966293881 cites W1985798551 @default.
- W1966293881 cites W1992043136 @default.
- W1966293881 cites W1997329250 @default.
- W1966293881 cites W2004360551 @default.
- W1966293881 cites W2018201383 @default.
- W1966293881 cites W2018617236 @default.
- W1966293881 cites W2020909889 @default.
- W1966293881 cites W2022211160 @default.
- W1966293881 cites W2023450156 @default.
- W1966293881 cites W2025581748 @default.
- W1966293881 cites W2026660819 @default.
- W1966293881 cites W2027836137 @default.
- W1966293881 cites W2028340208 @default.
- W1966293881 cites W2029167106 @default.
- W1966293881 cites W2029965154 @default.
- W1966293881 cites W2030611870 @default.
- W1966293881 cites W2030725755 @default.
- W1966293881 cites W2030841140 @default.
- W1966293881 cites W2037200917 @default.
- W1966293881 cites W2043619056 @default.
- W1966293881 cites W2047728595 @default.
- W1966293881 cites W2055418802 @default.
- W1966293881 cites W2057369072 @default.
- W1966293881 cites W2062749418 @default.
- W1966293881 cites W2063831812 @default.
- W1966293881 cites W2065756075 @default.
- W1966293881 cites W2069690875 @default.
- W1966293881 cites W2070893594 @default.
- W1966293881 cites W2073431867 @default.
- W1966293881 cites W2083009384 @default.
- W1966293881 cites W2083575622 @default.
- W1966293881 cites W2085175081 @default.
- W1966293881 cites W2085342864 @default.
- W1966293881 cites W2085965241 @default.
- W1966293881 cites W2086104856 @default.
- W1966293881 cites W2087496520 @default.
- W1966293881 cites W2089078903 @default.
- W1966293881 cites W2093966277 @default.
- W1966293881 cites W2130974204 @default.
- W1966293881 cites W2142205601 @default.
- W1966293881 cites W2142401829 @default.
- W1966293881 cites W2147454903 @default.
- W1966293881 cites W2156163511 @default.
- W1966293881 cites W2158098325 @default.
- W1966293881 cites W2158714815 @default.
- W1966293881 cites W2177205004 @default.
- W1966293881 cites W2219622712 @default.
- W1966293881 cites W2224621358 @default.
- W1966293881 cites W2317552723 @default.
- W1966293881 cites W2326732435 @default.
- W1966293881 cites W2395642597 @default.
- W1966293881 cites W2488208380 @default.
- W1966293881 cites W2950550440 @default.
- W1966293881 cites W4250362815 @default.
- W1966293881 doi "https://doi.org/10.1002/(sici)1097-0282(19991015)50:5<459::aid-bip1>3.0.co;2-b" @default.
- W1966293881 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10479730" @default.
- W1966293881 hasPublicationYear "1999" @default.
- W1966293881 type Work @default.
- W1966293881 sameAs 1966293881 @default.
- W1966293881 citedByCount "81" @default.
- W1966293881 countsByYear W19662938812013 @default.
- W1966293881 countsByYear W19662938812014 @default.
- W1966293881 countsByYear W19662938812015 @default.
- W1966293881 countsByYear W19662938812016 @default.
- W1966293881 countsByYear W19662938812018 @default.
- W1966293881 countsByYear W19662938812019 @default.
- W1966293881 countsByYear W19662938812020 @default.
- W1966293881 countsByYear W19662938812021 @default.
- W1966293881 countsByYear W19662938812022 @default.
- W1966293881 countsByYear W19662938812023 @default.
- W1966293881 crossrefType "journal-article" @default.
- W1966293881 hasAuthorship W1966293881A5038399669 @default.
- W1966293881 hasAuthorship W1966293881A5055527433 @default.
- W1966293881 hasAuthorship W1966293881A5057316262 @default.
- W1966293881 hasAuthorship W1966293881A5060529789 @default.
- W1966293881 hasAuthorship W1966293881A5089331513 @default.
- W1966293881 hasConcept C112887158 @default.