Matches in SemOpenAlex for { <https://semopenalex.org/work/W1966295073> ?p ?o ?g. }
- W1966295073 endingPage "3372" @default.
- W1966295073 startingPage "3366" @default.
- W1966295073 abstract "Neural networks have been popular due to their capabilities in handling nonlinear relationships. Hence, this study intends to apply neural networks to implement a new fuzzy time series model to improve forecasting. Differing from previous studies, this study includes the various degrees of membership in establishing fuzzy relationships, which assist in capturing the relationships more properly. These fuzzy relationships are then used to forecast the stock index in Taiwan. With more information, the forecasting is expected to improve, too. In addition, due to the greater amount of information covered, the proposed model can be used to forecast directly regardless of whether out-of-sample observations appear in the in-sample observations. This study performs out-of-sample forecasting and the results are compared with those of previous studies to demonstrate the performance of the proposed model." @default.
- W1966295073 created "2016-06-24" @default.
- W1966295073 creator A5001603846 @default.
- W1966295073 creator A5049428656 @default.
- W1966295073 date "2010-04-01" @default.
- W1966295073 modified "2023-10-16" @default.
- W1966295073 title "A neural network-based fuzzy time series model to improve forecasting" @default.
- W1966295073 cites W1451332522 @default.
- W1966295073 cites W1585627609 @default.
- W1966295073 cites W1586003742 @default.
- W1966295073 cites W1967444025 @default.
- W1966295073 cites W1967495926 @default.
- W1966295073 cites W1971869067 @default.
- W1966295073 cites W1975909018 @default.
- W1966295073 cites W1980933792 @default.
- W1966295073 cites W1983147111 @default.
- W1966295073 cites W1988715797 @default.
- W1966295073 cites W1992096620 @default.
- W1966295073 cites W1993503008 @default.
- W1966295073 cites W2000507891 @default.
- W1966295073 cites W2005382206 @default.
- W1966295073 cites W2016277841 @default.
- W1966295073 cites W2016388131 @default.
- W1966295073 cites W2016646227 @default.
- W1966295073 cites W2017954768 @default.
- W1966295073 cites W2022349803 @default.
- W1966295073 cites W2024850745 @default.
- W1966295073 cites W2027182449 @default.
- W1966295073 cites W2028465564 @default.
- W1966295073 cites W2036950209 @default.
- W1966295073 cites W2041723679 @default.
- W1966295073 cites W2042176276 @default.
- W1966295073 cites W2044986678 @default.
- W1966295073 cites W2052946472 @default.
- W1966295073 cites W2053612364 @default.
- W1966295073 cites W2057482964 @default.
- W1966295073 cites W2060783388 @default.
- W1966295073 cites W2063008284 @default.
- W1966295073 cites W2065410941 @default.
- W1966295073 cites W2067271451 @default.
- W1966295073 cites W2067905240 @default.
- W1966295073 cites W2069803859 @default.
- W1966295073 cites W2074153186 @default.
- W1966295073 cites W2077037475 @default.
- W1966295073 cites W2083309845 @default.
- W1966295073 cites W2083422648 @default.
- W1966295073 cites W2085752583 @default.
- W1966295073 cites W2088503829 @default.
- W1966295073 cites W2102191912 @default.
- W1966295073 cites W2130519559 @default.
- W1966295073 cites W2131453387 @default.
- W1966295073 cites W2136103712 @default.
- W1966295073 cites W2149320615 @default.
- W1966295073 cites W2150755414 @default.
- W1966295073 cites W2157850792 @default.
- W1966295073 cites W2163828179 @default.
- W1966295073 cites W2165540812 @default.
- W1966295073 cites W2168577773 @default.
- W1966295073 cites W2285921603 @default.
- W1966295073 cites W2295785951 @default.
- W1966295073 cites W2764769393 @default.
- W1966295073 cites W3140672266 @default.
- W1966295073 cites W611697073 @default.
- W1966295073 cites W3021781821 @default.
- W1966295073 doi "https://doi.org/10.1016/j.eswa.2009.10.013" @default.
- W1966295073 hasPublicationYear "2010" @default.
- W1966295073 type Work @default.
- W1966295073 sameAs 1966295073 @default.
- W1966295073 citedByCount "160" @default.
- W1966295073 countsByYear W19662950732012 @default.
- W1966295073 countsByYear W19662950732013 @default.
- W1966295073 countsByYear W19662950732014 @default.
- W1966295073 countsByYear W19662950732015 @default.
- W1966295073 countsByYear W19662950732016 @default.
- W1966295073 countsByYear W19662950732017 @default.
- W1966295073 countsByYear W19662950732018 @default.
- W1966295073 countsByYear W19662950732019 @default.
- W1966295073 countsByYear W19662950732020 @default.
- W1966295073 countsByYear W19662950732021 @default.
- W1966295073 countsByYear W19662950732022 @default.
- W1966295073 countsByYear W19662950732023 @default.
- W1966295073 crossrefType "journal-article" @default.
- W1966295073 hasAuthorship W1966295073A5001603846 @default.
- W1966295073 hasAuthorship W1966295073A5049428656 @default.
- W1966295073 hasConcept C119857082 @default.
- W1966295073 hasConcept C124101348 @default.
- W1966295073 hasConcept C143724316 @default.
- W1966295073 hasConcept C151406439 @default.
- W1966295073 hasConcept C151730666 @default.
- W1966295073 hasConcept C154945302 @default.
- W1966295073 hasConcept C195975749 @default.
- W1966295073 hasConcept C29470771 @default.
- W1966295073 hasConcept C41008148 @default.
- W1966295073 hasConcept C50644808 @default.
- W1966295073 hasConcept C58166 @default.
- W1966295073 hasConcept C86803240 @default.
- W1966295073 hasConceptScore W1966295073C119857082 @default.
- W1966295073 hasConceptScore W1966295073C124101348 @default.