Matches in SemOpenAlex for { <https://semopenalex.org/work/W1966295103> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W1966295103 endingPage "54" @default.
- W1966295103 startingPage "45" @default.
- W1966295103 abstract "We propose a novel global minimization method, called NOVEL (Nonlinear Optimization via External Lead), and demonstrate its superior performance on neural network learning problems. The goal is improved learning of application problems that achieves either smaller networks or less error prone networks of the same size. This training method combines global and local searches to find a good local minimum. In benchmark comparisons against the best global optimization algorithms, it demonstrates superior performance improvement." @default.
- W1966295103 created "2016-06-24" @default.
- W1966295103 creator A5057883374 @default.
- W1966295103 creator A5080392568 @default.
- W1966295103 date "1996-03-01" @default.
- W1966295103 modified "2023-10-06" @default.
- W1966295103 title "Global optimization for neural network training" @default.
- W1966295103 cites W2006544565 @default.
- W1966295103 cites W2088978850 @default.
- W1966295103 cites W2993421702 @default.
- W1966295103 cites W4300886904 @default.
- W1966295103 cites W80439050 @default.
- W1966295103 doi "https://doi.org/10.1109/2.485892" @default.
- W1966295103 hasPublicationYear "1996" @default.
- W1966295103 type Work @default.
- W1966295103 sameAs 1966295103 @default.
- W1966295103 citedByCount "158" @default.
- W1966295103 countsByYear W19662951032012 @default.
- W1966295103 countsByYear W19662951032013 @default.
- W1966295103 countsByYear W19662951032014 @default.
- W1966295103 countsByYear W19662951032015 @default.
- W1966295103 countsByYear W19662951032016 @default.
- W1966295103 countsByYear W19662951032017 @default.
- W1966295103 countsByYear W19662951032018 @default.
- W1966295103 countsByYear W19662951032019 @default.
- W1966295103 countsByYear W19662951032020 @default.
- W1966295103 countsByYear W19662951032021 @default.
- W1966295103 countsByYear W19662951032022 @default.
- W1966295103 countsByYear W19662951032023 @default.
- W1966295103 crossrefType "journal-article" @default.
- W1966295103 hasAuthorship W1966295103A5057883374 @default.
- W1966295103 hasAuthorship W1966295103A5080392568 @default.
- W1966295103 hasConcept C121332964 @default.
- W1966295103 hasConcept C153294291 @default.
- W1966295103 hasConcept C154945302 @default.
- W1966295103 hasConcept C2777211547 @default.
- W1966295103 hasConcept C31258907 @default.
- W1966295103 hasConcept C41008148 @default.
- W1966295103 hasConcept C50644808 @default.
- W1966295103 hasConceptScore W1966295103C121332964 @default.
- W1966295103 hasConceptScore W1966295103C153294291 @default.
- W1966295103 hasConceptScore W1966295103C154945302 @default.
- W1966295103 hasConceptScore W1966295103C2777211547 @default.
- W1966295103 hasConceptScore W1966295103C31258907 @default.
- W1966295103 hasConceptScore W1966295103C41008148 @default.
- W1966295103 hasConceptScore W1966295103C50644808 @default.
- W1966295103 hasIssue "3" @default.
- W1966295103 hasLocation W19662951031 @default.
- W1966295103 hasOpenAccess W1966295103 @default.
- W1966295103 hasPrimaryLocation W19662951031 @default.
- W1966295103 hasRelatedWork W2101017737 @default.
- W1966295103 hasRelatedWork W2130966263 @default.
- W1966295103 hasRelatedWork W2159443810 @default.
- W1966295103 hasRelatedWork W2356271281 @default.
- W1966295103 hasRelatedWork W2386387936 @default.
- W1966295103 hasRelatedWork W3001020386 @default.
- W1966295103 hasRelatedWork W303964064 @default.
- W1966295103 hasRelatedWork W3107474891 @default.
- W1966295103 hasRelatedWork W644753246 @default.
- W1966295103 hasRelatedWork W1629725936 @default.
- W1966295103 hasVolume "29" @default.
- W1966295103 isParatext "false" @default.
- W1966295103 isRetracted "false" @default.
- W1966295103 magId "1966295103" @default.
- W1966295103 workType "article" @default.