Matches in SemOpenAlex for { <https://semopenalex.org/work/W1966324534> ?p ?o ?g. }
- W1966324534 endingPage "25" @default.
- W1966324534 startingPage "20" @default.
- W1966324534 abstract "Evolutionary optimization has been successfully used to increase our understanding of key properties of biochemical systems. Traditional optimization is, however, often insufficient for gaining deeper insights into the evolution of such systems because usually there is a mutual relationship between the properties optimized by evolution and the properties of the environment. Thus, by evolving towards optimal properties, organisms change their environment, which in turn alters the optimum. Evolutionary game theory provides an appropriate framework for analyzing evolution in such ‘dynamic fitness landscapes’. We therefore argue that it is a promising approach to studying the evolution of biochemical systems. Indeed, recent studies have applied evolutionary game theory to key issues in the evolution of energy metabolism. Evolutionary optimization has been successfully used to increase our understanding of key properties of biochemical systems. Traditional optimization is, however, often insufficient for gaining deeper insights into the evolution of such systems because usually there is a mutual relationship between the properties optimized by evolution and the properties of the environment. Thus, by evolving towards optimal properties, organisms change their environment, which in turn alters the optimum. Evolutionary game theory provides an appropriate framework for analyzing evolution in such ‘dynamic fitness landscapes’. We therefore argue that it is a promising approach to studying the evolution of biochemical systems. Indeed, recent studies have applied evolutionary game theory to key issues in the evolution of energy metabolism. A dynamic fitness landscape depends on the properties of the population; therefore, the fitness landscape changes as the population evolves. A dynamic fitness landscape can result from interactions between population and environment and from the presence of coevolving competitors in the environment [8]. (The term ‘fitness landscape’ refers to a function describing the relationship between the fitness of an organism and its properties (i.e. strategy) in the typically multidimensional space of possible properties.) A strategy that, if adopted by a population, cannot be invaded by any other strategy. An evolutionarily stable strategy is always an optimal strategy in its environment. A mathematical framework for modeling evolution in dynamic fitness landscapes [8]. Game theory was originally developed to study the optimal behavior of agents in games such as the prisoner's dilemma. A fixed fitness landscape does not depend on the properties of the evolving populations, which implies that the environment (including the strategies of competitors) does not change with the evolving population. In a fixed fitness landscape, the population evolves towards properties that maximize its fitness [8]. (The term ‘fitness landscape’ refers to a function describing the relationship between the fitness of an organism and its properties (i.e. strategy) in the typically multidimensional space of possible properties.) An approach for analyzing pathway fluxes on the basis of stoichiometric restrictions and maximization of product yields [39]. A strategy that maximizes fitness in a fixed fitness landscape. Reaction rates in a metabolic pathway at steady state. A mathematical model for describing the dynamics of population growth. Population dynamical models enable the interplay between environment and population to be studied [7]. A situation in which two individuals simultaneously have the choice of cooperative or selfish behavior (defection). If both players cooperate they gain a high payoff (‘reward’), but if both players choose defection they gain a low payoff (‘penalty’). If one player cooperates and the other player defects, however, the cooperator gains the lowest payoff (‘suckers payoff’) and the defector gains the highest possible payoff (‘temptation’). Thus, it always pays for a player to defect, irrespective of what the other player is choosing. Rational players therefore end up defecting, although in principle they could gain a higher reward. The prisoner's dilemma is frequently used to study the evolution of altruistic behavior [15]. A game in which two players simultaneously have the choice between three strategies, namely ‘rock’, ‘scissors’ and ‘paper’. Each strategy beats one strategy but in turn is beaten by the third strategy: paper beats rock, rock beats scissors, and scissors beats paper. Thus, there is no optimal strategy in this game. A framework in evolutionary theory for studying the evolution of communication [49,50]. Mathematical procedures to find an optimum of an objective function. A framework in evolutionary game theory for explaining the evolution of inefficient use of common resources [52]. It is a generalized form of a multiplayer prisoner's dilemma." @default.
- W1966324534 created "2016-06-24" @default.
- W1966324534 creator A5005301806 @default.
- W1966324534 creator A5030990689 @default.
- W1966324534 date "2005-01-01" @default.
- W1966324534 modified "2023-10-07" @default.
- W1966324534 title "Game-theoretical approaches to studying the evolution of biochemical systems" @default.
- W1966324534 cites W1499996884 @default.
- W1966324534 cites W1600814660 @default.
- W1966324534 cites W1851737710 @default.
- W1966324534 cites W1967190757 @default.
- W1966324534 cites W1967829443 @default.
- W1966324534 cites W1967897892 @default.
- W1966324534 cites W1970703124 @default.
- W1966324534 cites W1978031195 @default.
- W1966324534 cites W1985090800 @default.
- W1966324534 cites W1989559827 @default.
- W1966324534 cites W1993444065 @default.
- W1966324534 cites W1994930272 @default.
- W1966324534 cites W2001380829 @default.
- W1966324534 cites W2009837386 @default.
- W1966324534 cites W2010534192 @default.
- W1966324534 cites W2011366098 @default.
- W1966324534 cites W2020021522 @default.
- W1966324534 cites W2023262956 @default.
- W1966324534 cites W2023752646 @default.
- W1966324534 cites W2027007791 @default.
- W1966324534 cites W2038478640 @default.
- W1966324534 cites W2047195788 @default.
- W1966324534 cites W2062663664 @default.
- W1966324534 cites W2063792498 @default.
- W1966324534 cites W2066021029 @default.
- W1966324534 cites W2066034383 @default.
- W1966324534 cites W2069603408 @default.
- W1966324534 cites W2073584364 @default.
- W1966324534 cites W2092682814 @default.
- W1966324534 cites W2092941724 @default.
- W1966324534 cites W2095922193 @default.
- W1966324534 cites W2097141283 @default.
- W1966324534 cites W2099921102 @default.
- W1966324534 cites W2108463866 @default.
- W1966324534 cites W2121287972 @default.
- W1966324534 cites W2122562915 @default.
- W1966324534 cites W2126922170 @default.
- W1966324534 cites W2143375128 @default.
- W1966324534 cites W2147451144 @default.
- W1966324534 cites W2157813453 @default.
- W1966324534 cites W2160059782 @default.
- W1966324534 cites W2160137338 @default.
- W1966324534 cites W2161112276 @default.
- W1966324534 cites W2164296191 @default.
- W1966324534 cites W2167030552 @default.
- W1966324534 cites W2226396244 @default.
- W1966324534 cites W38239056 @default.
- W1966324534 doi "https://doi.org/10.1016/j.tibs.2004.11.006" @default.
- W1966324534 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15653322" @default.
- W1966324534 hasPublicationYear "2005" @default.
- W1966324534 type Work @default.
- W1966324534 sameAs 1966324534 @default.
- W1966324534 citedByCount "90" @default.
- W1966324534 countsByYear W19663245342012 @default.
- W1966324534 countsByYear W19663245342013 @default.
- W1966324534 countsByYear W19663245342014 @default.
- W1966324534 countsByYear W19663245342015 @default.
- W1966324534 countsByYear W19663245342016 @default.
- W1966324534 countsByYear W19663245342017 @default.
- W1966324534 countsByYear W19663245342018 @default.
- W1966324534 countsByYear W19663245342019 @default.
- W1966324534 countsByYear W19663245342021 @default.
- W1966324534 countsByYear W19663245342022 @default.
- W1966324534 countsByYear W19663245342023 @default.
- W1966324534 crossrefType "journal-article" @default.
- W1966324534 hasAuthorship W1966324534A5005301806 @default.
- W1966324534 hasAuthorship W1966324534A5030990689 @default.
- W1966324534 hasConcept C144024400 @default.
- W1966324534 hasConcept C144237770 @default.
- W1966324534 hasConcept C149923435 @default.
- W1966324534 hasConcept C154945302 @default.
- W1966324534 hasConcept C159149176 @default.
- W1966324534 hasConcept C177142836 @default.
- W1966324534 hasConcept C18903297 @default.
- W1966324534 hasConcept C20249471 @default.
- W1966324534 hasConcept C26517878 @default.
- W1966324534 hasConcept C2908647359 @default.
- W1966324534 hasConcept C33923547 @default.
- W1966324534 hasConcept C38652104 @default.
- W1966324534 hasConcept C41008148 @default.
- W1966324534 hasConcept C86803240 @default.
- W1966324534 hasConcept C91852762 @default.
- W1966324534 hasConceptScore W1966324534C144024400 @default.
- W1966324534 hasConceptScore W1966324534C144237770 @default.
- W1966324534 hasConceptScore W1966324534C149923435 @default.
- W1966324534 hasConceptScore W1966324534C154945302 @default.
- W1966324534 hasConceptScore W1966324534C159149176 @default.
- W1966324534 hasConceptScore W1966324534C177142836 @default.
- W1966324534 hasConceptScore W1966324534C18903297 @default.
- W1966324534 hasConceptScore W1966324534C20249471 @default.
- W1966324534 hasConceptScore W1966324534C26517878 @default.