Matches in SemOpenAlex for { <https://semopenalex.org/work/W1966472904> ?p ?o ?g. }
- W1966472904 endingPage "1277" @default.
- W1966472904 startingPage "1264" @default.
- W1966472904 abstract "Smac/DIABLO is a protein released from mitochondria into the cytosol in response to apoptotic stimuli. Smac promotes apoptosis at least in part through antagonizing inhibitor of apoptosis proteins (IAPs), including XIAP, cIAP-1, and cIAP-2. Smac interacts with these IAPs via its N-terminal AVPI binding motif. There has been an enormous interest in academic laboratories and pharmaceutical companies in the design of small-molecule Smac mimetics as potential anticancer agents. This task is particularly challenging because it involves targeting protein−protein interactions. Nevertheless, intense research has now generated potent, specific, cell-permeable small-molecule peptidomimetics and nonpeptidic mimetics. To date, two types of Smac mimetics have been reported, namely, monovalent and bivalent Smac mimetics. The monovalent compounds are designed to mimic the binding of a single AVPI binding motif to IAP proteins, whereas the bivalent compounds contain two AVPI binding motif mimetics tethered together through a linker. Studies from several groups have clearly demonstrated that both monovalent and bivalent Smac mimetics not only enhance the antitumor activity of other anticancer agents but also can induce apoptosis as single agents in a subset of human cancer cell lines in vitro and are capable of achieving tumor regression in animal models of human cancer. In general, bivalent Smac mimetics are 100−1000 times more potent than their corresponding monovalent Smac mimetics in induction of apoptosis in tumor cells. However, properly designed monovalent Smac mimetics can achieve oral bioavailability and may have major advantages over bivalent Smac mimetics as potential drug candidates. In-depth insights on the molecular mechanism of action of Smac mimetics have been provided by several independent studies. It was shown that Smac mimetics induce apoptosis in tumor cells by targeting cIAP-1/-2 for the rapid degradation of these proteins, which leads to activation of nuclear factor κB (NF-κB) and production and secretion of tumor necrosis factor α (TNFα). TNFα promotes formation of a receptor-interacting serine−threonine kinase 1 (RIPK1)-dependent caspase-8-activating complex, leading to activation of caspase-8 and -3/-7 and ultimately to apoptosis. For the most efficient apoptosis induction, Smac mimetics also need to remove the inhibition of XIAP to caspase-3/-7. Hence, Smac mimetics induce apoptosis in tumor cells by targeting not only cIAP-1/-2 but also XIAP. The employment of potent, cell-permeable, small-molecule Smac mimetics has yielded important insights into the regulation of apoptosis by IAP proteins. To date, at least one Smac mimetic has been advanced into clinical development. Several other Smac mimetics are in an advanced preclinical development stage and are expected to enter human clinical testing for the treatment of cancer in the near future." @default.
- W1966472904 created "2016-06-24" @default.
- W1966472904 creator A5001560024 @default.
- W1966472904 creator A5012781936 @default.
- W1966472904 creator A5013963899 @default.
- W1966472904 creator A5016709396 @default.
- W1966472904 creator A5049458323 @default.
- W1966472904 creator A5061472917 @default.
- W1966472904 creator A5061886518 @default.
- W1966472904 creator A5073225781 @default.
- W1966472904 creator A5073754378 @default.
- W1966472904 creator A5090448113 @default.
- W1966472904 date "2008-10-21" @default.
- W1966472904 modified "2023-10-02" @default.
- W1966472904 title "Design of Small-Molecule Peptidic and Nonpeptidic Smac Mimetics" @default.
- W1966472904 cites W1492587973 @default.
- W1966472904 cites W1598971691 @default.
- W1966472904 cites W1616649922 @default.
- W1966472904 cites W1618299283 @default.
- W1966472904 cites W1971314986 @default.
- W1966472904 cites W1976353819 @default.
- W1966472904 cites W1976935037 @default.
- W1966472904 cites W1986320887 @default.
- W1966472904 cites W1989277510 @default.
- W1966472904 cites W1993470980 @default.
- W1966472904 cites W1998423564 @default.
- W1966472904 cites W2004611844 @default.
- W1966472904 cites W2005572311 @default.
- W1966472904 cites W2006077720 @default.
- W1966472904 cites W2008443832 @default.
- W1966472904 cites W2014569891 @default.
- W1966472904 cites W2027737461 @default.
- W1966472904 cites W2035493275 @default.
- W1966472904 cites W2039597975 @default.
- W1966472904 cites W2040370168 @default.
- W1966472904 cites W2042409437 @default.
- W1966472904 cites W2048593328 @default.
- W1966472904 cites W2053308358 @default.
- W1966472904 cites W2054717287 @default.
- W1966472904 cites W2064299413 @default.
- W1966472904 cites W2065818103 @default.
- W1966472904 cites W2069800916 @default.
- W1966472904 cites W2080207536 @default.
- W1966472904 cites W2080916979 @default.
- W1966472904 cites W2093475144 @default.
- W1966472904 cites W2095453782 @default.
- W1966472904 cites W2097644162 @default.
- W1966472904 cites W2116609506 @default.
- W1966472904 cites W2123513769 @default.
- W1966472904 cites W2125715557 @default.
- W1966472904 cites W2134452061 @default.
- W1966472904 cites W2135603829 @default.
- W1966472904 cites W2144841919 @default.
- W1966472904 cites W2145006562 @default.
- W1966472904 cites W2146226667 @default.
- W1966472904 cites W2160029849 @default.
- W1966472904 cites W2162653594 @default.
- W1966472904 cites W2167490100 @default.
- W1966472904 cites W2170507464 @default.
- W1966472904 cites W2172236291 @default.
- W1966472904 cites W4235457469 @default.
- W1966472904 cites W4355260 @default.
- W1966472904 doi "https://doi.org/10.1021/ar8000553" @default.
- W1966472904 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2676167" @default.
- W1966472904 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18937395" @default.
- W1966472904 hasPublicationYear "2008" @default.
- W1966472904 type Work @default.
- W1966472904 sameAs 1966472904 @default.
- W1966472904 citedByCount "150" @default.
- W1966472904 countsByYear W19664729042012 @default.
- W1966472904 countsByYear W19664729042013 @default.
- W1966472904 countsByYear W19664729042014 @default.
- W1966472904 countsByYear W19664729042015 @default.
- W1966472904 countsByYear W19664729042016 @default.
- W1966472904 countsByYear W19664729042017 @default.
- W1966472904 countsByYear W19664729042018 @default.
- W1966472904 countsByYear W19664729042019 @default.
- W1966472904 countsByYear W19664729042020 @default.
- W1966472904 countsByYear W19664729042021 @default.
- W1966472904 countsByYear W19664729042022 @default.
- W1966472904 countsByYear W19664729042023 @default.
- W1966472904 crossrefType "journal-article" @default.
- W1966472904 hasAuthorship W1966472904A5001560024 @default.
- W1966472904 hasAuthorship W1966472904A5012781936 @default.
- W1966472904 hasAuthorship W1966472904A5013963899 @default.
- W1966472904 hasAuthorship W1966472904A5016709396 @default.
- W1966472904 hasAuthorship W1966472904A5049458323 @default.
- W1966472904 hasAuthorship W1966472904A5061472917 @default.
- W1966472904 hasAuthorship W1966472904A5061886518 @default.
- W1966472904 hasAuthorship W1966472904A5073225781 @default.
- W1966472904 hasAuthorship W1966472904A5073754378 @default.
- W1966472904 hasAuthorship W1966472904A5090448113 @default.
- W1966472904 hasBestOaLocation W19664729042 @default.
- W1966472904 hasConcept C111919701 @default.
- W1966472904 hasConcept C121608353 @default.
- W1966472904 hasConcept C124790011 @default.
- W1966472904 hasConcept C12554922 @default.
- W1966472904 hasConcept C161624437 @default.