Matches in SemOpenAlex for { <https://semopenalex.org/work/W1966521729> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W1966521729 endingPage "538" @default.
- W1966521729 startingPage "521" @default.
- W1966521729 abstract "A performance analysis methodology for correlated parallel computations based on statistical theory is proposed. Divide-and-conquer strategy is widely used in solving problems in parallel by partitioning and allocating a number of given tasks to available computing resources. When the tasks exhibit run-time-dependent behaviors during execution and share a universal distribution function in their execution times, analysis of parallel execution time can be performed with the assistance of probabilistic and statistical models. Correlation (dependence) in execution times among tasks has posed a significant factor in influencing the analysis accuracy which is unmanageable by any known analysis methodologies. We establish a relation between a task's or a processor's execution time and the parallel execution time, in terms of expected value as well as variance when each task's execution time can be closely modeled by a normal distribution, for either uncorrelated or correlated tasks. This relation is then applied to the modeling and analysis of various parallel computation paradigms in which different communication and synchronization patterns along the processing are present. The method proposed has a wider application scope and gives more accurate prediction results than previously known approaches. We also show that, as an extended application of the analysis method to a large scope of problems, load balance among processors can be vastly improved with some novel static task allocation technique in manipulating the correlation among tasks. Experimental results in analyzing a parallel tree search algorithm and two parallel sorting algorithms show very accurate analysis and prediction with the proposed method." @default.
- W1966521729 created "2016-06-24" @default.
- W1966521729 creator A5027049527 @default.
- W1966521729 date "2008-09-01" @default.
- W1966521729 modified "2023-09-23" @default.
- W1966521729 title "Performance modeling and analysis of correlated parallel computations" @default.
- W1966521729 cites W1534946390 @default.
- W1966521729 cites W1564306452 @default.
- W1966521729 cites W1667165204 @default.
- W1966521729 cites W1869243490 @default.
- W1966521729 cites W1965617612 @default.
- W1966521729 cites W1969762680 @default.
- W1966521729 cites W1969947998 @default.
- W1966521729 cites W1978355700 @default.
- W1966521729 cites W1995357269 @default.
- W1966521729 cites W2004629605 @default.
- W1966521729 cites W2008218666 @default.
- W1966521729 cites W2008376750 @default.
- W1966521729 cites W2068819949 @default.
- W1966521729 cites W2068852367 @default.
- W1966521729 cites W2078824416 @default.
- W1966521729 cites W2099266627 @default.
- W1966521729 cites W2105025658 @default.
- W1966521729 cites W2106212727 @default.
- W1966521729 cites W2109734800 @default.
- W1966521729 cites W2110720223 @default.
- W1966521729 cites W2113126365 @default.
- W1966521729 cites W2117077079 @default.
- W1966521729 cites W2118510031 @default.
- W1966521729 cites W2118963820 @default.
- W1966521729 cites W2125769064 @default.
- W1966521729 cites W2126753236 @default.
- W1966521729 cites W2127082188 @default.
- W1966521729 cites W2134099373 @default.
- W1966521729 cites W2151022062 @default.
- W1966521729 cites W2152841532 @default.
- W1966521729 cites W2157443684 @default.
- W1966521729 cites W2168903052 @default.
- W1966521729 cites W2318245334 @default.
- W1966521729 cites W3150977923 @default.
- W1966521729 cites W640137621 @default.
- W1966521729 doi "https://doi.org/10.1016/j.parco.2008.05.002" @default.
- W1966521729 hasPublicationYear "2008" @default.
- W1966521729 type Work @default.
- W1966521729 sameAs 1966521729 @default.
- W1966521729 citedByCount "5" @default.
- W1966521729 countsByYear W19665217292012 @default.
- W1966521729 countsByYear W19665217292019 @default.
- W1966521729 crossrefType "journal-article" @default.
- W1966521729 hasAuthorship W1966521729A5027049527 @default.
- W1966521729 hasConcept C11413529 @default.
- W1966521729 hasConcept C173608175 @default.
- W1966521729 hasConcept C41008148 @default.
- W1966521729 hasConcept C45374587 @default.
- W1966521729 hasConceptScore W1966521729C11413529 @default.
- W1966521729 hasConceptScore W1966521729C173608175 @default.
- W1966521729 hasConceptScore W1966521729C41008148 @default.
- W1966521729 hasConceptScore W1966521729C45374587 @default.
- W1966521729 hasIssue "9" @default.
- W1966521729 hasLocation W19665217291 @default.
- W1966521729 hasOpenAccess W1966521729 @default.
- W1966521729 hasPrimaryLocation W19665217291 @default.
- W1966521729 hasRelatedWork W1491899005 @default.
- W1966521729 hasRelatedWork W1558545464 @default.
- W1966521729 hasRelatedWork W1572523360 @default.
- W1966521729 hasRelatedWork W1604898313 @default.
- W1966521729 hasRelatedWork W2074301136 @default.
- W1966521729 hasRelatedWork W2117014006 @default.
- W1966521729 hasRelatedWork W2172791042 @default.
- W1966521729 hasRelatedWork W2354062721 @default.
- W1966521729 hasRelatedWork W2372170743 @default.
- W1966521729 hasRelatedWork W4233815414 @default.
- W1966521729 hasVolume "34" @default.
- W1966521729 isParatext "false" @default.
- W1966521729 isRetracted "false" @default.
- W1966521729 magId "1966521729" @default.
- W1966521729 workType "article" @default.