Matches in SemOpenAlex for { <https://semopenalex.org/work/W1966532833> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W1966532833 abstract "Multimodal datasets often feature a combination of continuous signals and a series of discrete events. For instance, when studying human behaviour it is common to annotate actions performed by the participant over several other modalities such as video recordings of the face or physiological signals. These events are nominal, not frequent and are not sampled at a continuous rate while signals are numeric and often sampled at short fixed intervals. This fundamentally different nature complicates the analysis of the relation among these modalities which is often studied after each modality has been summarised or reduced. This paper investigates a novel approach to model the relation between such modality types bypassing the need for summarising each modality independently of each other. For that purpose, we introduce a deep learning model based on convolutional neural networks that is adapted to process multiple modalities at different time resolutions we name deep multimodal fusion. Furthermore, we introduce and compare three alternative methods (convolution, training and pooling fusion) to integrate sequences of events with continuous signals within this model. We evaluate deep multimodal fusion using a game user dataset where player physiological signals are recorded in parallel with game events. Results suggest that the proposed architecture can appropriately capture multimodal information as it yields higher prediction accuracies compared to single-modality models. In addition, it appears that pooling fusion, based on a novel filter-pooling method provides the more effective fusion approach for the investigated types of data." @default.
- W1966532833 created "2016-06-24" @default.
- W1966532833 creator A5018719028 @default.
- W1966532833 creator A5072029181 @default.
- W1966532833 date "2014-11-12" @default.
- W1966532833 modified "2023-10-14" @default.
- W1966532833 title "Deep Multimodal Fusion" @default.
- W1966532833 cites W171902450 @default.
- W1966532833 cites W1992809818 @default.
- W1966532833 cites W2008008156 @default.
- W1966532833 cites W2028417436 @default.
- W1966532833 cites W2039082187 @default.
- W1966532833 cites W2041996544 @default.
- W1966532833 cites W2089468765 @default.
- W1966532833 cites W2098476033 @default.
- W1966532833 cites W2100495367 @default.
- W1966532833 cites W2103184652 @default.
- W1966532833 cites W2129134806 @default.
- W1966532833 cites W2139039274 @default.
- W1966532833 cites W2148633389 @default.
- W1966532833 cites W2171939880 @default.
- W1966532833 doi "https://doi.org/10.1145/2663204.2663236" @default.
- W1966532833 hasPublicationYear "2014" @default.
- W1966532833 type Work @default.
- W1966532833 sameAs 1966532833 @default.
- W1966532833 citedByCount "43" @default.
- W1966532833 countsByYear W19665328332015 @default.
- W1966532833 countsByYear W19665328332016 @default.
- W1966532833 countsByYear W19665328332017 @default.
- W1966532833 countsByYear W19665328332018 @default.
- W1966532833 countsByYear W19665328332019 @default.
- W1966532833 countsByYear W19665328332020 @default.
- W1966532833 countsByYear W19665328332021 @default.
- W1966532833 countsByYear W19665328332022 @default.
- W1966532833 countsByYear W19665328332023 @default.
- W1966532833 crossrefType "proceedings-article" @default.
- W1966532833 hasAuthorship W1966532833A5018719028 @default.
- W1966532833 hasAuthorship W1966532833A5072029181 @default.
- W1966532833 hasConcept C108583219 @default.
- W1966532833 hasConcept C111919701 @default.
- W1966532833 hasConcept C119857082 @default.
- W1966532833 hasConcept C124101348 @default.
- W1966532833 hasConcept C138885662 @default.
- W1966532833 hasConcept C144024400 @default.
- W1966532833 hasConcept C153180895 @default.
- W1966532833 hasConcept C154945302 @default.
- W1966532833 hasConcept C158525013 @default.
- W1966532833 hasConcept C25343380 @default.
- W1966532833 hasConcept C2776401178 @default.
- W1966532833 hasConcept C2779903281 @default.
- W1966532833 hasConcept C2780226545 @default.
- W1966532833 hasConcept C33954974 @default.
- W1966532833 hasConcept C36289849 @default.
- W1966532833 hasConcept C41008148 @default.
- W1966532833 hasConcept C41895202 @default.
- W1966532833 hasConcept C70437156 @default.
- W1966532833 hasConcept C81363708 @default.
- W1966532833 hasConcept C98045186 @default.
- W1966532833 hasConceptScore W1966532833C108583219 @default.
- W1966532833 hasConceptScore W1966532833C111919701 @default.
- W1966532833 hasConceptScore W1966532833C119857082 @default.
- W1966532833 hasConceptScore W1966532833C124101348 @default.
- W1966532833 hasConceptScore W1966532833C138885662 @default.
- W1966532833 hasConceptScore W1966532833C144024400 @default.
- W1966532833 hasConceptScore W1966532833C153180895 @default.
- W1966532833 hasConceptScore W1966532833C154945302 @default.
- W1966532833 hasConceptScore W1966532833C158525013 @default.
- W1966532833 hasConceptScore W1966532833C25343380 @default.
- W1966532833 hasConceptScore W1966532833C2776401178 @default.
- W1966532833 hasConceptScore W1966532833C2779903281 @default.
- W1966532833 hasConceptScore W1966532833C2780226545 @default.
- W1966532833 hasConceptScore W1966532833C33954974 @default.
- W1966532833 hasConceptScore W1966532833C36289849 @default.
- W1966532833 hasConceptScore W1966532833C41008148 @default.
- W1966532833 hasConceptScore W1966532833C41895202 @default.
- W1966532833 hasConceptScore W1966532833C70437156 @default.
- W1966532833 hasConceptScore W1966532833C81363708 @default.
- W1966532833 hasConceptScore W1966532833C98045186 @default.
- W1966532833 hasFunder F4320334960 @default.
- W1966532833 hasLocation W19665328331 @default.
- W1966532833 hasOpenAccess W1966532833 @default.
- W1966532833 hasPrimaryLocation W19665328331 @default.
- W1966532833 hasRelatedWork W2517027266 @default.
- W1966532833 hasRelatedWork W2731899572 @default.
- W1966532833 hasRelatedWork W2999805992 @default.
- W1966532833 hasRelatedWork W3116150086 @default.
- W1966532833 hasRelatedWork W3133861977 @default.
- W1966532833 hasRelatedWork W4200173597 @default.
- W1966532833 hasRelatedWork W4291897433 @default.
- W1966532833 hasRelatedWork W4312417841 @default.
- W1966532833 hasRelatedWork W4321369474 @default.
- W1966532833 hasRelatedWork W4380075502 @default.
- W1966532833 isParatext "false" @default.
- W1966532833 isRetracted "false" @default.
- W1966532833 magId "1966532833" @default.
- W1966532833 workType "article" @default.