Matches in SemOpenAlex for { <https://semopenalex.org/work/W1966587746> ?p ?o ?g. }
- W1966587746 abstract "In dimension $densuremath{geqslant}3$, the directed polymer in a random medium undergoes a phase transition between a free phase at high temperature and a low-temperature disorder-dominated phase. For the latter phase, Fisher and Huse have proposed a droplet theory based on the scaling of the free-energy fluctuations $ensuremath{Delta}F(l)ensuremath{sim}{l}^{ensuremath{theta}}$ at scale $l$. On the other hand, in related growth models belonging to the Kardar-Parisi-Zhang universality class, Forrest and Tang have found that the height-height correlation function is logarithmic at the transition. For the directed polymer model at criticality, this translates into logarithmic free-energy fluctuations $ensuremath{Delta}{F}_{{T}_{c}}(l)ensuremath{sim}{(mathrm{ln}phantom{rule{0.2em}{0ex}}l)}^{ensuremath{sigma}}$ with $ensuremath{sigma}=1∕2$. In this paper, we propose a droplet scaling analysis exactly at criticality based on this logarithmic scaling. Our main conclusion is that the typical correlation length $ensuremath{xi}(T)$ of the low-temperature phase diverges as $mathrm{ln}phantom{rule{0.2em}{0ex}}ensuremath{xi}(T)ensuremath{sim}{[ensuremath{-}mathrm{ln}({T}_{c}ensuremath{-}T)]}^{1∕ensuremath{sigma}}ensuremath{sim}{[ensuremath{-}mathrm{ln}({T}_{c}ensuremath{-}T)]}^{2}$, instead of the usual power law $ensuremath{xi}(T)ensuremath{sim}{({T}_{c}ensuremath{-}T)}^{ensuremath{-}ensuremath{nu}}$. Furthermore, the logarithmic dependence of $ensuremath{Delta}{F}_{{T}_{c}}(l)$ leads to the conclusion that the critical temperature ${T}_{c}$ actually coincides with the explicit upper bound ${T}_{2}$ derived by Derrida and co-workers, where ${T}_{2}$ corresponds to the temperature below which the ratio $overline{{Z}_{L}^{2}}∕{(overline{{Z}_{L}})}^{2}$ diverges exponentially in $L$. Finally, since the Fisher-Huse droplet theory was initially introduced for the spin-glass phase, we briefly mention the similarities with and differences from the directed polymer model. If one speculates that the free energy of droplet excitations for spin glasses is also logarithmic at ${T}_{c}$, one obtains a logarithmic decay for the mean square correlation function at criticality, $overline{{C}^{2}(r)}ensuremath{sim}1∕{(mathrm{ln}phantom{rule{0.2em}{0ex}}r)}^{ensuremath{sigma}}$, instead of the usual power law $1∕{r}^{densuremath{-}2+ensuremath{eta}}$." @default.
- W1966587746 created "2016-06-24" @default.
- W1966587746 creator A5060853119 @default.
- W1966587746 creator A5090565816 @default.
- W1966587746 date "2006-07-05" @default.
- W1966587746 modified "2023-09-25" @default.
- W1966587746 title "Freezing transition of the directed polymer in a1+drandom medium: Location of the critical temperature and unusual critical properties" @default.
- W1966587746 cites W1526257355 @default.
- W1966587746 cites W1677703250 @default.
- W1966587746 cites W1965408845 @default.
- W1966587746 cites W1966611945 @default.
- W1966587746 cites W1971381456 @default.
- W1966587746 cites W1971748042 @default.
- W1966587746 cites W197447690 @default.
- W1966587746 cites W1979913454 @default.
- W1966587746 cites W1983563808 @default.
- W1966587746 cites W1984842125 @default.
- W1966587746 cites W1986743479 @default.
- W1966587746 cites W1992118529 @default.
- W1966587746 cites W1992983430 @default.
- W1966587746 cites W1995083282 @default.
- W1966587746 cites W2000314985 @default.
- W1966587746 cites W2001705220 @default.
- W1966587746 cites W2004571405 @default.
- W1966587746 cites W2005627141 @default.
- W1966587746 cites W2007804609 @default.
- W1966587746 cites W2011955188 @default.
- W1966587746 cites W2012838229 @default.
- W1966587746 cites W2013911361 @default.
- W1966587746 cites W2018016439 @default.
- W1966587746 cites W2018248087 @default.
- W1966587746 cites W2019651551 @default.
- W1966587746 cites W2020730579 @default.
- W1966587746 cites W2024718189 @default.
- W1966587746 cites W2029851794 @default.
- W1966587746 cites W2042755954 @default.
- W1966587746 cites W2043574365 @default.
- W1966587746 cites W2047722015 @default.
- W1966587746 cites W2048481523 @default.
- W1966587746 cites W2055437742 @default.
- W1966587746 cites W2058151160 @default.
- W1966587746 cites W2061263717 @default.
- W1966587746 cites W2062127177 @default.
- W1966587746 cites W2063959001 @default.
- W1966587746 cites W2065565384 @default.
- W1966587746 cites W2067520844 @default.
- W1966587746 cites W2072790958 @default.
- W1966587746 cites W2091957196 @default.
- W1966587746 cites W2100633843 @default.
- W1966587746 cites W2117345524 @default.
- W1966587746 cites W2118682732 @default.
- W1966587746 cites W2143387992 @default.
- W1966587746 cites W2170429144 @default.
- W1966587746 cites W3099803055 @default.
- W1966587746 cites W3100333039 @default.
- W1966587746 cites W3102252855 @default.
- W1966587746 doi "https://doi.org/10.1103/physreve.74.011101" @default.
- W1966587746 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16907055" @default.
- W1966587746 hasPublicationYear "2006" @default.
- W1966587746 type Work @default.
- W1966587746 sameAs 1966587746 @default.
- W1966587746 citedByCount "14" @default.
- W1966587746 countsByYear W19665877462012 @default.
- W1966587746 countsByYear W19665877462013 @default.
- W1966587746 countsByYear W19665877462016 @default.
- W1966587746 countsByYear W19665877462017 @default.
- W1966587746 crossrefType "journal-article" @default.
- W1966587746 hasAuthorship W1966587746A5060853119 @default.
- W1966587746 hasAuthorship W1966587746A5090565816 @default.
- W1966587746 hasBestOaLocation W19665877462 @default.
- W1966587746 hasConcept C114614502 @default.
- W1966587746 hasConcept C121332964 @default.
- W1966587746 hasConcept C134306372 @default.
- W1966587746 hasConcept C149288129 @default.
- W1966587746 hasConcept C164154869 @default.
- W1966587746 hasConcept C186370098 @default.
- W1966587746 hasConcept C2524010 @default.
- W1966587746 hasConcept C26873012 @default.
- W1966587746 hasConcept C33676613 @default.
- W1966587746 hasConcept C33923547 @default.
- W1966587746 hasConcept C37914503 @default.
- W1966587746 hasConcept C39927690 @default.
- W1966587746 hasConcept C62520636 @default.
- W1966587746 hasConcept C68532491 @default.
- W1966587746 hasConcept C99844830 @default.
- W1966587746 hasConceptScore W1966587746C114614502 @default.
- W1966587746 hasConceptScore W1966587746C121332964 @default.
- W1966587746 hasConceptScore W1966587746C134306372 @default.
- W1966587746 hasConceptScore W1966587746C149288129 @default.
- W1966587746 hasConceptScore W1966587746C164154869 @default.
- W1966587746 hasConceptScore W1966587746C186370098 @default.
- W1966587746 hasConceptScore W1966587746C2524010 @default.
- W1966587746 hasConceptScore W1966587746C26873012 @default.
- W1966587746 hasConceptScore W1966587746C33676613 @default.
- W1966587746 hasConceptScore W1966587746C33923547 @default.
- W1966587746 hasConceptScore W1966587746C37914503 @default.
- W1966587746 hasConceptScore W1966587746C39927690 @default.
- W1966587746 hasConceptScore W1966587746C62520636 @default.
- W1966587746 hasConceptScore W1966587746C68532491 @default.
- W1966587746 hasConceptScore W1966587746C99844830 @default.