Matches in SemOpenAlex for { <https://semopenalex.org/work/W1966593888> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W1966593888 endingPage "2" @default.
- W1966593888 startingPage "1" @default.
- W1966593888 abstract "Ambient intelligence (AmI) is one of the most important advances in computer technology in the mobile era. By being aware and applying knowledge of ergonomics (human factors), AmI system users will be in better shape and health, become more effective and find using AmI system a more pleasant and enjoyable experience. This special issue contains selected papers from the 1st international conference on ambient intelligence and ergonomics in Asia (AmIE 2013), which was held at Taichung city, Taiwan, July 3–5, 2013. The conference attracted a large number of scientific papers that contributed to the state-of-the-art in the fields of ambient intelligence and ergonomics. After a strict review, five articles from researchers around the world were finally accepted. To determine an understandable algorithm that could be used by designers to create novel concept designs, M.T. Wang and C.C. Yang selected the popular motor scooter as a sample product, and used the most distinctive front handle cover as a design target. Their method included three phases: preparation, construction of conceptual creativity, and semantic analysis. After comparing random idea sketches with designs available on the market, they observed that certain concept designs obtained using this method were exceptionally innovative, and could be easily redesigned for an actual product. A.M. Otebolaku and M.T. Andrade investigated context-aware recommendation techniques for implicit delivery of contextually relevant online media items. The proposed recommendation service identifies a user’s dynamic contextual situation from the device’s built-in sensors, and uses case-based reasoning to determine the user’s current contextual preferences. The effectiveness of the proposed recommendation service was evaluated with a case study. Gripping and pinching are frequently used hand strength in various occupational activities and in clinical evaluation of the hand. Therefore, formulating grip and pinch prediction models with easily obtainable personal parameters will help facilitate the design and evaluation of workplace environments or facilitate the hand impairment or progression assessments. P.C. Sung, C.C. Hsu, C.L. Lee, Y.-S.P. Chiu, and H.L. Chen developed maximum voluntary contraction (MVC) grip and key pinch strength prediction models using regression method and artificial neural networks (ANN). An ANN is a prevalent humanized computing method that imitates the central nervous system of a human. To estimate the cycle time of a job in a wafer fabrication factory, H.C. Wu and T. Chen proposed a joint use of a classification and regression tree (CART) and back propagation network (BPN). In their method, a BPN is constructed to estimate the cycle times of jobs of a branch. A real case was used to evaluate the effectiveness of the proposed methodology. C.T. Tseng, Y.L. Lee, and C.C. Chou designed an AmIbased decision support system that combined an electromagnetism-like mechanism (EM) and sensory data to aid human operators in making decisions regarding the T. Chen (&) Department of Industrial Engineering and Systems Management, Feng Chia University, Taichung, Taiwan e-mail: tcchen@fcu.edu.tw" @default.
- W1966593888 created "2016-06-24" @default.
- W1966593888 creator A5028856908 @default.
- W1966593888 creator A5033742725 @default.
- W1966593888 creator A5062491214 @default.
- W1966593888 creator A5084246401 @default.
- W1966593888 date "2014-11-08" @default.
- W1966593888 modified "2023-10-16" @default.
- W1966593888 title "Ambient intelligence and ergonomics in Asia" @default.
- W1966593888 cites W3130867594 @default.
- W1966593888 doi "https://doi.org/10.1007/s12652-014-0252-9" @default.
- W1966593888 hasPublicationYear "2014" @default.
- W1966593888 type Work @default.
- W1966593888 sameAs 1966593888 @default.
- W1966593888 citedByCount "8" @default.
- W1966593888 countsByYear W19665938882015 @default.
- W1966593888 countsByYear W19665938882017 @default.
- W1966593888 countsByYear W19665938882018 @default.
- W1966593888 countsByYear W19665938882022 @default.
- W1966593888 crossrefType "journal-article" @default.
- W1966593888 hasAuthorship W1966593888A5028856908 @default.
- W1966593888 hasAuthorship W1966593888A5033742725 @default.
- W1966593888 hasAuthorship W1966593888A5062491214 @default.
- W1966593888 hasAuthorship W1966593888A5084246401 @default.
- W1966593888 hasBestOaLocation W19665938881 @default.
- W1966593888 hasConcept C139502532 @default.
- W1966593888 hasConcept C154945302 @default.
- W1966593888 hasConcept C166735990 @default.
- W1966593888 hasConcept C201638289 @default.
- W1966593888 hasConcept C3017944768 @default.
- W1966593888 hasConcept C41008148 @default.
- W1966593888 hasConcept C545542383 @default.
- W1966593888 hasConcept C71924100 @default.
- W1966593888 hasConceptScore W1966593888C139502532 @default.
- W1966593888 hasConceptScore W1966593888C154945302 @default.
- W1966593888 hasConceptScore W1966593888C166735990 @default.
- W1966593888 hasConceptScore W1966593888C201638289 @default.
- W1966593888 hasConceptScore W1966593888C3017944768 @default.
- W1966593888 hasConceptScore W1966593888C41008148 @default.
- W1966593888 hasConceptScore W1966593888C545542383 @default.
- W1966593888 hasConceptScore W1966593888C71924100 @default.
- W1966593888 hasIssue "1" @default.
- W1966593888 hasLocation W19665938881 @default.
- W1966593888 hasOpenAccess W1966593888 @default.
- W1966593888 hasPrimaryLocation W19665938881 @default.
- W1966593888 hasRelatedWork W1599768842 @default.
- W1966593888 hasRelatedWork W1966593888 @default.
- W1966593888 hasRelatedWork W2018398943 @default.
- W1966593888 hasRelatedWork W2104595967 @default.
- W1966593888 hasRelatedWork W2583728434 @default.
- W1966593888 hasRelatedWork W2775155272 @default.
- W1966593888 hasRelatedWork W2914777633 @default.
- W1966593888 hasRelatedWork W2994264650 @default.
- W1966593888 hasRelatedWork W4242735564 @default.
- W1966593888 hasRelatedWork W4294734173 @default.
- W1966593888 hasVolume "6" @default.
- W1966593888 isParatext "false" @default.
- W1966593888 isRetracted "false" @default.
- W1966593888 magId "1966593888" @default.
- W1966593888 workType "article" @default.