Matches in SemOpenAlex for { <https://semopenalex.org/work/W1966608797> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W1966608797 abstract "In this paper, we discuss the role that machine learning can play in computer forensics. We begin our analysis by considering the role that machine learning has gained in computer security applications, with the aim of aiding the computer forensics community in learning the lessons from the experience of the computer security community. Afterwards, we propose a brief literature review, with the purpose of illustrating the areas of computer forensics where machine learning techniques have been used until now. Then, we remark the technical requirements that should be meet by tools for computer security and computer forensics applications, with the goal of illustrating in which way machine learning algorithms can be of any practical help. We intend this paper to foster applications of machine learning in computer forensics, and we hope that the ideas in this paper may represent promising directions to pursue in the quest for more efficient and effective computer forensics tools." @default.
- W1966608797 created "2016-06-24" @default.
- W1966608797 creator A5063852799 @default.
- W1966608797 creator A5065359946 @default.
- W1966608797 creator A5075367917 @default.
- W1966608797 date "2011-10-21" @default.
- W1966608797 modified "2023-09-27" @default.
- W1966608797 title "Machine learning in computer forensics (and the lessons learned from machine learning in computer security)" @default.
- W1966608797 cites W1538546197 @default.
- W1966608797 cites W1975653240 @default.
- W1966608797 cites W1988918299 @default.
- W1966608797 cites W2001479375 @default.
- W1966608797 cites W2009585495 @default.
- W1966608797 cites W2031379432 @default.
- W1966608797 cites W2032793012 @default.
- W1966608797 cites W2066664409 @default.
- W1966608797 cites W2076342816 @default.
- W1966608797 cites W2091504194 @default.
- W1966608797 cites W2099140842 @default.
- W1966608797 cites W2108867737 @default.
- W1966608797 cites W2114461157 @default.
- W1966608797 cites W2117499375 @default.
- W1966608797 cites W2118020653 @default.
- W1966608797 cites W2122956713 @default.
- W1966608797 cites W2125962012 @default.
- W1966608797 cites W2137833784 @default.
- W1966608797 cites W2138765883 @default.
- W1966608797 cites W2149712981 @default.
- W1966608797 cites W2150142104 @default.
- W1966608797 cites W2150847526 @default.
- W1966608797 cites W2151298633 @default.
- W1966608797 doi "https://doi.org/10.1145/2046684.2046700" @default.
- W1966608797 hasPublicationYear "2011" @default.
- W1966608797 type Work @default.
- W1966608797 sameAs 1966608797 @default.
- W1966608797 citedByCount "9" @default.
- W1966608797 countsByYear W19666087972014 @default.
- W1966608797 countsByYear W19666087972018 @default.
- W1966608797 countsByYear W19666087972020 @default.
- W1966608797 countsByYear W19666087972021 @default.
- W1966608797 countsByYear W19666087972022 @default.
- W1966608797 crossrefType "proceedings-article" @default.
- W1966608797 hasAuthorship W1966608797A5063852799 @default.
- W1966608797 hasAuthorship W1966608797A5065359946 @default.
- W1966608797 hasAuthorship W1966608797A5075367917 @default.
- W1966608797 hasConcept C107457646 @default.
- W1966608797 hasConcept C115903868 @default.
- W1966608797 hasConcept C119857082 @default.
- W1966608797 hasConcept C154945302 @default.
- W1966608797 hasConcept C38652104 @default.
- W1966608797 hasConcept C41008148 @default.
- W1966608797 hasConcept C50747538 @default.
- W1966608797 hasConcept C556601545 @default.
- W1966608797 hasConcept C84418412 @default.
- W1966608797 hasConceptScore W1966608797C107457646 @default.
- W1966608797 hasConceptScore W1966608797C115903868 @default.
- W1966608797 hasConceptScore W1966608797C119857082 @default.
- W1966608797 hasConceptScore W1966608797C154945302 @default.
- W1966608797 hasConceptScore W1966608797C38652104 @default.
- W1966608797 hasConceptScore W1966608797C41008148 @default.
- W1966608797 hasConceptScore W1966608797C50747538 @default.
- W1966608797 hasConceptScore W1966608797C556601545 @default.
- W1966608797 hasConceptScore W1966608797C84418412 @default.
- W1966608797 hasLocation W19666087971 @default.
- W1966608797 hasOpenAccess W1966608797 @default.
- W1966608797 hasPrimaryLocation W19666087971 @default.
- W1966608797 hasRelatedWork W1577492366 @default.
- W1966608797 hasRelatedWork W1594164630 @default.
- W1966608797 hasRelatedWork W2139587689 @default.
- W1966608797 hasRelatedWork W2361499900 @default.
- W1966608797 hasRelatedWork W2489557937 @default.
- W1966608797 hasRelatedWork W2581829556 @default.
- W1966608797 hasRelatedWork W3083231950 @default.
- W1966608797 hasRelatedWork W4238452393 @default.
- W1966608797 hasRelatedWork W4319777530 @default.
- W1966608797 hasRelatedWork W4385607421 @default.
- W1966608797 isParatext "false" @default.
- W1966608797 isRetracted "false" @default.
- W1966608797 magId "1966608797" @default.
- W1966608797 workType "article" @default.