Matches in SemOpenAlex for { <https://semopenalex.org/work/W1966686938> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W1966686938 endingPage "258" @default.
- W1966686938 startingPage "245" @default.
- W1966686938 abstract "Swelling of articular cartilage depends on its fixed charge density and distribution, the stiffness of its collagen-proteoglycan matrix, and the ion concentrations in the interstitium. A theory for a tertiary mixture has been developed, including the two fluid-solid phases (biphasic), and an ion phase, representing cation and anion of a single salt, to describe the deformation and stress fields for cartilage under chemical and/or mechanical loads. This triphasic theory combines the physico-chemical theory for ionic and polyionic (proteoglycan) solutions with the biphasic theory for cartilage. The present model assumes the fixed charge groups to remain unchanged, and that the counter-ions are the cations of a single-salt of the bathing solution. The momentum equation for the neutral salt and for the intersitial water are expressed in terms of their chemical potentials whose gradients are the driving forces for their movements. These chemical potentials depend on fluid pressure p, salt concentration c, solid matrix dilatation e and fixed charge density cF. For a uni-uni valent salt such as NaCl, they are given by mu i = mu io + (RT/Mi)ln[gamma 2 +/- c(c + cF)] and mu w = mu wo + [p-RT phi (2c + cF) + Bwe]/pwT, where R, T, Mi, gamma +/-, phi, pwT and Bw are universal gas constant, absolute temperature, molecular weight, mean activity coefficient of salt, osmotic coefficient, true density of water, and a coupling material coefficient, respectively. For infinitesimal strains and material isotropy, the stress-strain relationship for the total mixture stress is sigma = - pI-TcI + lambda s(trE)I + 2 musE, where E is the strain tensor and (lambda s, mu s) are the Lamé constants of the elastic solid matrix. The chemical-expansion stress (-Tc) derives from the charge-to-charge repulsive forces within the solid matrix. This theory can be applied to both equilibrium and non-equilibrium problems. For equilibrium free swelling problems, the theory yields the well known Donnan equilibrium ion distribution and osmotic pressure equations, along with an analytical expression for the pre-stress in the solid matrix. For the confined-compression swelling problem, it predicts that the applied compressive stress is shared by three load support mechanisms: 1) the Donnan osmotic pressure; 2) the chemical-expansion stress; and 3) the solid matrix elastic stress. Numerical calculations have been made, based on a set of equilibrium free-swelling and confined-compression data, to assess the relative contribution of each mechanism to load support. Our results show that all three mechanisms are important in determining the overall compressive stiffness of cartilage." @default.
- W1966686938 created "2016-06-24" @default.
- W1966686938 creator A5024705964 @default.
- W1966686938 creator A5028112515 @default.
- W1966686938 creator A5045781264 @default.
- W1966686938 date "1991-08-01" @default.
- W1966686938 modified "2023-10-14" @default.
- W1966686938 title "A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage" @default.
- W1966686938 doi "https://doi.org/10.1115/1.2894880" @default.
- W1966686938 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/1921350" @default.
- W1966686938 hasPublicationYear "1991" @default.
- W1966686938 type Work @default.
- W1966686938 sameAs 1966686938 @default.
- W1966686938 citedByCount "989" @default.
- W1966686938 countsByYear W19666869382012 @default.
- W1966686938 countsByYear W19666869382013 @default.
- W1966686938 countsByYear W19666869382014 @default.
- W1966686938 countsByYear W19666869382015 @default.
- W1966686938 countsByYear W19666869382016 @default.
- W1966686938 countsByYear W19666869382017 @default.
- W1966686938 countsByYear W19666869382018 @default.
- W1966686938 countsByYear W19666869382019 @default.
- W1966686938 countsByYear W19666869382020 @default.
- W1966686938 countsByYear W19666869382021 @default.
- W1966686938 countsByYear W19666869382022 @default.
- W1966686938 countsByYear W19666869382023 @default.
- W1966686938 crossrefType "journal-article" @default.
- W1966686938 hasAuthorship W1966686938A5024705964 @default.
- W1966686938 hasAuthorship W1966686938A5028112515 @default.
- W1966686938 hasAuthorship W1966686938A5045781264 @default.
- W1966686938 hasConcept C113196181 @default.
- W1966686938 hasConcept C121332964 @default.
- W1966686938 hasConcept C145148216 @default.
- W1966686938 hasConcept C150708132 @default.
- W1966686938 hasConcept C159985019 @default.
- W1966686938 hasConcept C178790620 @default.
- W1966686938 hasConcept C185592680 @default.
- W1966686938 hasConcept C192562407 @default.
- W1966686938 hasConcept C2778540859 @default.
- W1966686938 hasConcept C43617362 @default.
- W1966686938 hasConcept C62520636 @default.
- W1966686938 hasConcept C97355855 @default.
- W1966686938 hasConceptScore W1966686938C113196181 @default.
- W1966686938 hasConceptScore W1966686938C121332964 @default.
- W1966686938 hasConceptScore W1966686938C145148216 @default.
- W1966686938 hasConceptScore W1966686938C150708132 @default.
- W1966686938 hasConceptScore W1966686938C159985019 @default.
- W1966686938 hasConceptScore W1966686938C178790620 @default.
- W1966686938 hasConceptScore W1966686938C185592680 @default.
- W1966686938 hasConceptScore W1966686938C192562407 @default.
- W1966686938 hasConceptScore W1966686938C2778540859 @default.
- W1966686938 hasConceptScore W1966686938C43617362 @default.
- W1966686938 hasConceptScore W1966686938C62520636 @default.
- W1966686938 hasConceptScore W1966686938C97355855 @default.
- W1966686938 hasIssue "3" @default.
- W1966686938 hasLocation W19666869381 @default.
- W1966686938 hasLocation W19666869382 @default.
- W1966686938 hasOpenAccess W1966686938 @default.
- W1966686938 hasPrimaryLocation W19666869381 @default.
- W1966686938 hasRelatedWork W1770466321 @default.
- W1966686938 hasRelatedWork W1992515882 @default.
- W1966686938 hasRelatedWork W2035215415 @default.
- W1966686938 hasRelatedWork W2038757244 @default.
- W1966686938 hasRelatedWork W2039265932 @default.
- W1966686938 hasRelatedWork W2069070512 @default.
- W1966686938 hasRelatedWork W2407181204 @default.
- W1966686938 hasRelatedWork W2526637554 @default.
- W1966686938 hasRelatedWork W2945954759 @default.
- W1966686938 hasRelatedWork W3136100849 @default.
- W1966686938 hasVolume "113" @default.
- W1966686938 isParatext "false" @default.
- W1966686938 isRetracted "false" @default.
- W1966686938 magId "1966686938" @default.
- W1966686938 workType "article" @default.