Matches in SemOpenAlex for { <https://semopenalex.org/work/W1966722543> ?p ?o ?g. }
- W1966722543 endingPage "1174" @default.
- W1966722543 startingPage "1159" @default.
- W1966722543 abstract "Haemoglobins from unicellular organisms, plants or animals, share a common structure, which results from the folding, around the heme group, of a polypeptide chain made from 6-8 helices. Nowadays, deciphering the genome of several species allows one to draw the evolutionary tree of this protein going back to 1800 millions of years, at a time when oxygen began to accumulate in the atmosphere. This permits to follow the evolution of the ancestral gene and of its product. It is likely that, only in complex multicellular species, transport and storage of oxygen became the main physiological function of this molecule. In addition, in unicellular organisms and small invertebrates, it is likely that the main function of this protein was to protect the organism from the toxic effect of O2, CO and NO*. The very high oxygen affinity of these molecules, leading them to act rather as a scavenger as an oxygen carrier, supports this hypothesis. Haemoglobins from microorganisms, which may probably be the closest vestiges to the ancestral molecules, are divided into three families. The first one is made from flavohaemoglobins, a group of chimerical proteins carrying a globin domain and an oxido-reduction FAD-dependant domain. The second corresponds to truncated haemoglobins, which are hexacoordinated with very high oxygen-affinity molecules, 20-40 residues shorter than classical haemoglobins. The third group is made from bacterial haemoglobins such as that of Vitreoscilla. Some specific structural arrangements in the region surrounding the heme are cause of their high oxygen affinity. In plants, two types of haemoglobins are present (non-symbiotic and symbiotic), that arose from duplication of an ancestral vegetal gene. Non-symbiotic haemoglobins, which are probably the oldest, are scarcely distributed within tissues having high energetic consumption. Conversely, symbiotic haemoglobins (also named leghaemoglobins) are present at a high concentration (mM) mostly in the rhizomes of legumes, where they are involved in nitrogen metabolism. In some species, haemoglobin was proposed to be an oxygen sensor bringing to the organism information to adjust metabolism or biosynthesis to the oxygen requirement. Elsewhere haemoglobin may act as final electron acceptors in oxido-reduction pathways. Evolution of haemoglobin in invertebrates followed a large variety of scenarios. Some surprising functions as sulphide acquisition in invertebrates living near hydrothermal vents, or a role in the phototrophism of worm need to be mentioned. In invertebrates, the size of haemoglobin varies from monomers to giant molecules associating up to 144 subunits, while in vertebrates it is always a tetramer. In some species, several haemoglobins, with completely different structure and function, may coexist. This demonstrates how hazardous may be to extrapolate the function of a protein from only structural data." @default.
- W1966722543 created "2016-06-24" @default.
- W1966722543 creator A5018366836 @default.
- W1966722543 creator A5075679908 @default.
- W1966722543 date "2002-12-01" @default.
- W1966722543 modified "2023-09-23" @default.
- W1966722543 title "L’hémoglobine, des micro-organismes à l’homme : un motif structural unique, des fonctions multiples" @default.
- W1966722543 cites W139144773 @default.
- W1966722543 cites W1481105441 @default.
- W1966722543 cites W1495515604 @default.
- W1966722543 cites W1507703835 @default.
- W1966722543 cites W1529656734 @default.
- W1966722543 cites W1540107478 @default.
- W1966722543 cites W1565468238 @default.
- W1966722543 cites W160419203 @default.
- W1966722543 cites W1653986885 @default.
- W1966722543 cites W1925116013 @default.
- W1966722543 cites W1935776831 @default.
- W1966722543 cites W1964768102 @default.
- W1966722543 cites W1965073965 @default.
- W1966722543 cites W1965266053 @default.
- W1966722543 cites W1966303793 @default.
- W1966722543 cites W1969333746 @default.
- W1966722543 cites W1974297725 @default.
- W1966722543 cites W1978054475 @default.
- W1966722543 cites W1979826628 @default.
- W1966722543 cites W1984698654 @default.
- W1966722543 cites W1987108915 @default.
- W1966722543 cites W1989528698 @default.
- W1966722543 cites W1991729186 @default.
- W1966722543 cites W1994003258 @default.
- W1966722543 cites W1996507241 @default.
- W1966722543 cites W1998751839 @default.
- W1966722543 cites W2001029839 @default.
- W1966722543 cites W2001619587 @default.
- W1966722543 cites W2004436328 @default.
- W1966722543 cites W2004826935 @default.
- W1966722543 cites W2008701717 @default.
- W1966722543 cites W2010745123 @default.
- W1966722543 cites W2015366415 @default.
- W1966722543 cites W2015705389 @default.
- W1966722543 cites W2016086080 @default.
- W1966722543 cites W2023059037 @default.
- W1966722543 cites W2025527648 @default.
- W1966722543 cites W2025694891 @default.
- W1966722543 cites W2027199621 @default.
- W1966722543 cites W2029826691 @default.
- W1966722543 cites W2030796996 @default.
- W1966722543 cites W2031122915 @default.
- W1966722543 cites W2034491979 @default.
- W1966722543 cites W2035368092 @default.
- W1966722543 cites W2044730491 @default.
- W1966722543 cites W2045230343 @default.
- W1966722543 cites W2045810258 @default.
- W1966722543 cites W2054193987 @default.
- W1966722543 cites W2055271291 @default.
- W1966722543 cites W2066538437 @default.
- W1966722543 cites W2067295662 @default.
- W1966722543 cites W2069773991 @default.
- W1966722543 cites W2072115406 @default.
- W1966722543 cites W2075239152 @default.
- W1966722543 cites W2075370468 @default.
- W1966722543 cites W2076128870 @default.
- W1966722543 cites W2077428907 @default.
- W1966722543 cites W2077547350 @default.
- W1966722543 cites W2078015782 @default.
- W1966722543 cites W2078974365 @default.
- W1966722543 cites W2081729903 @default.
- W1966722543 cites W2088437224 @default.
- W1966722543 cites W2088853649 @default.
- W1966722543 cites W2089203334 @default.
- W1966722543 cites W2091108104 @default.
- W1966722543 cites W2091875826 @default.
- W1966722543 cites W2098406639 @default.
- W1966722543 cites W2104666616 @default.
- W1966722543 cites W2107011278 @default.
- W1966722543 cites W2111885793 @default.
- W1966722543 cites W2112880344 @default.
- W1966722543 cites W2116520673 @default.
- W1966722543 cites W2120086270 @default.
- W1966722543 cites W2129320622 @default.
- W1966722543 cites W2133709520 @default.
- W1966722543 cites W2147361716 @default.
- W1966722543 cites W2147660064 @default.
- W1966722543 cites W2153135529 @default.
- W1966722543 cites W2156341767 @default.
- W1966722543 cites W2163948723 @default.
- W1966722543 cites W2183488527 @default.
- W1966722543 cites W2330606816 @default.
- W1966722543 cites W2380860737 @default.
- W1966722543 cites W2571572940 @default.
- W1966722543 cites W4231956143 @default.
- W1966722543 cites W4236819860 @default.
- W1966722543 cites W4251999364 @default.
- W1966722543 cites W4843882 @default.
- W1966722543 cites W2053252514 @default.
- W1966722543 doi "https://doi.org/10.1016/s1631-0691(02)01537-8" @default.
- W1966722543 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12520866" @default.