Matches in SemOpenAlex for { <https://semopenalex.org/work/W1966730582> ?p ?o ?g. }
- W1966730582 endingPage "1344" @default.
- W1966730582 startingPage "1329" @default.
- W1966730582 abstract "Binary Mg–Ca alloys with various Ca contents were fabricated under different working conditions. X-ray diffraction (XRD) analysis and optical microscopy observations showed that Mg–xCa (x = 1–3 wt%) alloys were composed of two phases, α(Mg) and Mg2Ca. The results of tensile tests and in vitro corrosion tests indicated that the mechanical properties could be adjusted by controlling the Ca content and processing treatment. The yield strength (YS), ultimate tensile strength (UTS) and elongation decreased with increasing Ca content. The UTS and elongation of as-cast Mg–1Ca alloy (71.38 ± 3.01 MPa and 1.87 ± 0.14%) were largely improved after hot rolling (166.7 ± 3.01 MPa and 3 ± 0.78%) and hot extrusion (239.63 ± 7.21 MPa and 10.63 ± 0.64%). The in vitro corrosion test in simulated body fluid (SBF) indicated that the microstructure and working history of Mg–xCa alloys strongly affected their corrosion behaviors. An increasing content of Mg2Ca phase led to a higher corrosion rate whereas hot rolling and hot extrusion could reduce it. The cytotoxicity evaluation using L-929 cells revealed that Mg–1Ca alloy did not induce toxicity to cells, and the viability of cells for Mg–1Ca alloy extraction medium was better than that of control. Moreover, Mg–1Ca alloy pins, with commercial pure Ti pins as control, were implanted into the left and right rabbit femoral shafts, respectively, and observed for 1, 2 and 3 months. High activity of osteoblast and osteocytes were observed around the Mg–1Ca alloy pins as shown by hematoxylin and eosin stained tissue sections. Radiographic examination revealed that the Mg–1Ca alloy pins gradually degraded in vivo within 90 days and the newly formed bone was clearly seen at month 3. Both the in vitro and in vivo corrosion suggested that a mixture of Mg(OH)2 and hydroxyapatite formed on the surface of Mg–1Ca alloy with the extension of immersion/implantation time. In addition, no significant difference (p > 0.05) of serum magnesium was detected at different degradation stages. All these results revealed that Mg–1Ca alloy had the acceptable biocompatibility as a new kind of biodegradable implant material. Based on the above results, a solid alloy/liquid solution interface model was also proposed to interpret the biocorrosion process and the associated hydroxyapatite mineralization." @default.
- W1966730582 created "2016-06-24" @default.
- W1966730582 creator A5016856595 @default.
- W1966730582 creator A5022868420 @default.
- W1966730582 creator A5046005885 @default.
- W1966730582 creator A5055517335 @default.
- W1966730582 date "2008-04-01" @default.
- W1966730582 modified "2023-10-17" @default.
- W1966730582 title "The development of binary Mg–Ca alloys for use as biodegradable materials within bone" @default.
- W1966730582 cites W1932912959 @default.
- W1966730582 cites W1963533463 @default.
- W1966730582 cites W1965013848 @default.
- W1966730582 cites W1976549325 @default.
- W1966730582 cites W1977824763 @default.
- W1966730582 cites W1979723262 @default.
- W1966730582 cites W1980083078 @default.
- W1966730582 cites W1982866376 @default.
- W1966730582 cites W1991642422 @default.
- W1966730582 cites W1992902310 @default.
- W1966730582 cites W2001400039 @default.
- W1966730582 cites W2001720620 @default.
- W1966730582 cites W2004275080 @default.
- W1966730582 cites W2006947296 @default.
- W1966730582 cites W2014932842 @default.
- W1966730582 cites W2020255727 @default.
- W1966730582 cites W2023416128 @default.
- W1966730582 cites W2024530973 @default.
- W1966730582 cites W2027506864 @default.
- W1966730582 cites W2028429581 @default.
- W1966730582 cites W2028559375 @default.
- W1966730582 cites W2032542005 @default.
- W1966730582 cites W2034792823 @default.
- W1966730582 cites W2049631960 @default.
- W1966730582 cites W2050583174 @default.
- W1966730582 cites W2053996514 @default.
- W1966730582 cites W2056833999 @default.
- W1966730582 cites W2061827690 @default.
- W1966730582 cites W2062944479 @default.
- W1966730582 cites W2080758979 @default.
- W1966730582 cites W2082332556 @default.
- W1966730582 cites W2086699454 @default.
- W1966730582 cites W2087208309 @default.
- W1966730582 cites W2087881385 @default.
- W1966730582 cites W2096735953 @default.
- W1966730582 cites W2107023629 @default.
- W1966730582 cites W2108254569 @default.
- W1966730582 cites W2109799654 @default.
- W1966730582 cites W2122835477 @default.
- W1966730582 cites W2128126525 @default.
- W1966730582 cites W2136132472 @default.
- W1966730582 cites W2144944462 @default.
- W1966730582 cites W2163070540 @default.
- W1966730582 cites W2163936468 @default.
- W1966730582 doi "https://doi.org/10.1016/j.biomaterials.2007.12.021" @default.
- W1966730582 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18191191" @default.
- W1966730582 hasPublicationYear "2008" @default.
- W1966730582 type Work @default.
- W1966730582 sameAs 1966730582 @default.
- W1966730582 citedByCount "1348" @default.
- W1966730582 countsByYear W19667305822012 @default.
- W1966730582 countsByYear W19667305822013 @default.
- W1966730582 countsByYear W19667305822014 @default.
- W1966730582 countsByYear W19667305822015 @default.
- W1966730582 countsByYear W19667305822016 @default.
- W1966730582 countsByYear W19667305822017 @default.
- W1966730582 countsByYear W19667305822018 @default.
- W1966730582 countsByYear W19667305822019 @default.
- W1966730582 countsByYear W19667305822020 @default.
- W1966730582 countsByYear W19667305822021 @default.
- W1966730582 countsByYear W19667305822022 @default.
- W1966730582 countsByYear W19667305822023 @default.
- W1966730582 crossrefType "journal-article" @default.
- W1966730582 hasAuthorship W1966730582A5016856595 @default.
- W1966730582 hasAuthorship W1966730582A5022868420 @default.
- W1966730582 hasAuthorship W1966730582A5046005885 @default.
- W1966730582 hasAuthorship W1966730582A5055517335 @default.
- W1966730582 hasConcept C112950240 @default.
- W1966730582 hasConcept C159985019 @default.
- W1966730582 hasConcept C178790620 @default.
- W1966730582 hasConcept C182508753 @default.
- W1966730582 hasConcept C185592680 @default.
- W1966730582 hasConcept C191897082 @default.
- W1966730582 hasConcept C192562407 @default.
- W1966730582 hasConcept C20625102 @default.
- W1966730582 hasConcept C26771246 @default.
- W1966730582 hasConcept C2778958987 @default.
- W1966730582 hasConcept C2780026712 @default.
- W1966730582 hasConcept C33947775 @default.
- W1966730582 hasConcept C44280652 @default.
- W1966730582 hasConcept C77017923 @default.
- W1966730582 hasConcept C87976508 @default.
- W1966730582 hasConceptScore W1966730582C112950240 @default.
- W1966730582 hasConceptScore W1966730582C159985019 @default.
- W1966730582 hasConceptScore W1966730582C178790620 @default.
- W1966730582 hasConceptScore W1966730582C182508753 @default.
- W1966730582 hasConceptScore W1966730582C185592680 @default.
- W1966730582 hasConceptScore W1966730582C191897082 @default.
- W1966730582 hasConceptScore W1966730582C192562407 @default.