Matches in SemOpenAlex for { <https://semopenalex.org/work/W1966854564> ?p ?o ?g. }
- W1966854564 endingPage "1834" @default.
- W1966854564 startingPage "1820" @default.
- W1966854564 abstract "Abstract This study investigates the applicability of empirical and radiative transfer models to estimate water content at leaf and landscape level. The main goal is to evaluate and compare the accuracy of these two approaches for estimating leaf water content by means of laboratory reflectance/transmittance measurements and for mapping leaf and canopy water content by using airborne Multispectral Infrared and Visible Imaging Spectrometer (MIVIS) data acquired over intensive poplar plantations (Ticino, Italy). At leaf level, we tested the performance of different spectral indices to estimate leaf equivalent water thickness (EWT) and leaf gravimetric water content (GWC) by using inverse ordinary least squares (OLS) regression, and reduced major axis (RMA) regression. The analysis showed that leaf reflectance is related to changes in EWT rather than GWC, with best results obtained by using RMA regression by exploiting the spectral index related to the continuum removed area of the 1200 nm water absorption feature with an explained variance of 61% and prediction error of 6.6%. Moreover, we inverted the PROSPECT leaf radiative transfer model to estimate leaf EWT and GWC and compared the results with those obtained by means of empirical models. The inversion of this model showed that leaf EWT can be successfully estimated with no prior information with mean relative errors of 14% and determination coefficient of 0.65. Inversion of the PROSPECT model showed some difficulties in the simultaneous estimation of leaf EWT and dry matter content, which led to large errors in GWC estimation. At landscape level with MIVIS data, we tested the performance of different spectral indices to estimate canopy water per unit ground area (EWTcanopy). We found a relative error of 20% using a continuum removed spectral index around 1200 nm. Furthermore, we used a model simulation to evaluate the possibility of applying empirical models based on appositely developed MIVIS double ratios to estimate mean leaf EWT at landscape level ( EWT ― ). It is shown that combined indices (double ratios) yielded significant results in estimating leaf EWT at landscape level by using MIVIS data (with errors around 2.6%), indicating their potential in reducing the effects of LAI on the recorded signal. The accuracy of the empirical estimation of EWTcanopy and EWT ― was finally compared with that obtained from inversion of the PROSPECT + SAILH canopy reflectance model to evaluate the potential of both methods for practical applications. A relative error of 27% was found for EWTcanopy and an overestimation of leaf EWT ― with relative errors around 19%. Results arising from this remote sensing application support the robustness of hyperspectral regression indices for estimating water content at both leaf and landscape level, with lower relative errors compared to those obtained from inversion of leaf and 1D canopy radiative transfer models." @default.
- W1966854564 created "2016-06-24" @default.
- W1966854564 creator A5004542037 @default.
- W1966854564 creator A5013518475 @default.
- W1966854564 creator A5020570515 @default.
- W1966854564 creator A5053055057 @default.
- W1966854564 creator A5056029481 @default.
- W1966854564 creator A5071843422 @default.
- W1966854564 creator A5077283969 @default.
- W1966854564 date "2008-04-15" @default.
- W1966854564 modified "2023-10-17" @default.
- W1966854564 title "Estimation of leaf and canopy water content in poplar plantations by means of hyperspectral indices and inverse modeling" @default.
- W1966854564 cites W1487726742 @default.
- W1966854564 cites W166244801 @default.
- W1966854564 cites W1967720462 @default.
- W1966854564 cites W1969010087 @default.
- W1966854564 cites W1969548928 @default.
- W1966854564 cites W1974110440 @default.
- W1966854564 cites W1978160572 @default.
- W1966854564 cites W1978617972 @default.
- W1966854564 cites W1981695237 @default.
- W1966854564 cites W1986786848 @default.
- W1966854564 cites W1992979930 @default.
- W1966854564 cites W1994154616 @default.
- W1966854564 cites W1994378716 @default.
- W1966854564 cites W1999091234 @default.
- W1966854564 cites W2005124595 @default.
- W1966854564 cites W2022900594 @default.
- W1966854564 cites W2025757188 @default.
- W1966854564 cites W2026307199 @default.
- W1966854564 cites W2026637525 @default.
- W1966854564 cites W2026882925 @default.
- W1966854564 cites W2029647802 @default.
- W1966854564 cites W2033006984 @default.
- W1966854564 cites W2036056542 @default.
- W1966854564 cites W2038412351 @default.
- W1966854564 cites W2041466618 @default.
- W1966854564 cites W2042908594 @default.
- W1966854564 cites W2042997202 @default.
- W1966854564 cites W2043577460 @default.
- W1966854564 cites W2044135054 @default.
- W1966854564 cites W2049398443 @default.
- W1966854564 cites W2053178447 @default.
- W1966854564 cites W2055842947 @default.
- W1966854564 cites W2060290625 @default.
- W1966854564 cites W2063532465 @default.
- W1966854564 cites W2064670135 @default.
- W1966854564 cites W2065191898 @default.
- W1966854564 cites W2066214675 @default.
- W1966854564 cites W2066612219 @default.
- W1966854564 cites W2069267285 @default.
- W1966854564 cites W2069883641 @default.
- W1966854564 cites W2074443152 @default.
- W1966854564 cites W2080239438 @default.
- W1966854564 cites W2082627840 @default.
- W1966854564 cites W2084509333 @default.
- W1966854564 cites W2084555690 @default.
- W1966854564 cites W2090071069 @default.
- W1966854564 cites W2092261052 @default.
- W1966854564 cites W2097110832 @default.
- W1966854564 cites W2109404357 @default.
- W1966854564 cites W2109606373 @default.
- W1966854564 cites W2111947859 @default.
- W1966854564 cites W2116743998 @default.
- W1966854564 cites W2122172506 @default.
- W1966854564 cites W2125763679 @default.
- W1966854564 cites W2129206446 @default.
- W1966854564 cites W2129874533 @default.
- W1966854564 cites W2131744218 @default.
- W1966854564 cites W2133272607 @default.
- W1966854564 cites W2135178273 @default.
- W1966854564 cites W2148883373 @default.
- W1966854564 cites W2149461430 @default.
- W1966854564 cites W2152634225 @default.
- W1966854564 cites W2153398128 @default.
- W1966854564 cites W2153883492 @default.
- W1966854564 cites W2162257611 @default.
- W1966854564 cites W2163410149 @default.
- W1966854564 cites W2166312616 @default.
- W1966854564 cites W2171063647 @default.
- W1966854564 cites W2185445703 @default.
- W1966854564 cites W2224070395 @default.
- W1966854564 cites W856379086 @default.
- W1966854564 cites W2520651401 @default.
- W1966854564 doi "https://doi.org/10.1016/j.rse.2007.09.005" @default.
- W1966854564 hasPublicationYear "2008" @default.
- W1966854564 type Work @default.
- W1966854564 sameAs 1966854564 @default.
- W1966854564 citedByCount "217" @default.
- W1966854564 countsByYear W19668545642012 @default.
- W1966854564 countsByYear W19668545642013 @default.
- W1966854564 countsByYear W19668545642014 @default.
- W1966854564 countsByYear W19668545642015 @default.
- W1966854564 countsByYear W19668545642016 @default.
- W1966854564 countsByYear W19668545642017 @default.
- W1966854564 countsByYear W19668545642018 @default.
- W1966854564 countsByYear W19668545642019 @default.
- W1966854564 countsByYear W19668545642020 @default.