Matches in SemOpenAlex for { <https://semopenalex.org/work/W1966869105> ?p ?o ?g. }
- W1966869105 endingPage "521" @default.
- W1966869105 startingPage "509" @default.
- W1966869105 abstract "Abstract Implementation of try and error method for membrane preparation procedures is a time and cost consuming technique. This study tries to present a novel idea to make membrane preparation procedure heuristic. Applying this method, helps researchers to predict performance of a membrane prior to its preparation. At first, a number of membranes are prepared and characterized. Then, their measured separation properties are used for prediction of performance of a membrane before its preparation. Furthermore, after preparation of each new membrane, its relevant data can be added to the data bank of the model to improve its capability for the next predictions. Therefore, this model will be improved step by step, after each new preparation. Fuzzy logic-based (FL) model and Principal Component Analysis (PCA) were employed to predict permeability of C3H8, CH4 and H2 in ternary gas mixtures using a membrane gas separation module. Based on Placket–Burman (P–B) design, eight different polydimethylsiloxane (PDMS) membranes were synthesized using different preparation conditions, solvent concentration, crosslinker concentration, catalyst concentration, type (or boiling point) of solvent, stirring time and synthesis times in ambient temperature and in an oven at 80 °C, and their gas permeation properties were investigated. In an innovating procedure, effects of operating conditions, including feed temperature, pressure, flow rate, C3H8 and H2 concentration, as well as preparation conditions on the permeability of gasses through the synthesized membranes were investigated. Basically, in order to develop a FL model to predict permeability of gasses through all the synthesized membranes, synthesis and operating conditions should be considered, simultaneously, and this extends dimensionality of the problem. In all engineering problems, as the number of variables increases, the corresponding data matrix extends. To overcome the problem, PCA method was randomly used for seven of the prepared membranes from P–B design, and it was shown that the first four principal components could describe almost all of the variation in the data matrix. This means that the dimensionality of the problem reduced from 12 to 4. Using the first four principal components, a Sugeno type FL inference system was trained and applied to predict permeability of gasses. FL modeling results showed that there is an excellent agreement between the experimental data and the predicted values, with mean squared relative error (MSRE) of less than 0.0095. The developed model was used for the 8th membrane and its ability to predict separation parameters of this membrane was confirmed." @default.
- W1966869105 created "2016-06-24" @default.
- W1966869105 creator A5007536976 @default.
- W1966869105 creator A5013585881 @default.
- W1966869105 creator A5038599442 @default.
- W1966869105 date "2010-09-01" @default.
- W1966869105 modified "2023-09-26" @default.
- W1966869105 title "Prediction of ternary gas permeation through synthesized PDMS membranes by using Principal Component Analysis (PCA) and fuzzy logic (FL)" @default.
- W1966869105 cites W1588443895 @default.
- W1966869105 cites W1964536978 @default.
- W1966869105 cites W1978431589 @default.
- W1966869105 cites W1987519637 @default.
- W1966869105 cites W1998969508 @default.
- W1966869105 cites W2003063150 @default.
- W1966869105 cites W2003943899 @default.
- W1966869105 cites W2004250606 @default.
- W1966869105 cites W2010818132 @default.
- W1966869105 cites W2015846069 @default.
- W1966869105 cites W2016702521 @default.
- W1966869105 cites W2019207321 @default.
- W1966869105 cites W2019362960 @default.
- W1966869105 cites W2029857288 @default.
- W1966869105 cites W2044934306 @default.
- W1966869105 cites W2049775346 @default.
- W1966869105 cites W2050683183 @default.
- W1966869105 cites W2051931829 @default.
- W1966869105 cites W2054278185 @default.
- W1966869105 cites W2054801966 @default.
- W1966869105 cites W2055168202 @default.
- W1966869105 cites W2059286372 @default.
- W1966869105 cites W2066395380 @default.
- W1966869105 cites W2068030142 @default.
- W1966869105 cites W2068276685 @default.
- W1966869105 cites W2076579537 @default.
- W1966869105 cites W2078123740 @default.
- W1966869105 cites W2079325629 @default.
- W1966869105 cites W2082903436 @default.
- W1966869105 cites W2085882989 @default.
- W1966869105 cites W2120761441 @default.
- W1966869105 cites W2122076966 @default.
- W1966869105 cites W2130502218 @default.
- W1966869105 cites W2136057251 @default.
- W1966869105 cites W2148837678 @default.
- W1966869105 cites W2156218668 @default.
- W1966869105 cites W4232947951 @default.
- W1966869105 doi "https://doi.org/10.1016/j.memsci.2010.05.055" @default.
- W1966869105 hasPublicationYear "2010" @default.
- W1966869105 type Work @default.
- W1966869105 sameAs 1966869105 @default.
- W1966869105 citedByCount "20" @default.
- W1966869105 countsByYear W19668691052012 @default.
- W1966869105 countsByYear W19668691052013 @default.
- W1966869105 countsByYear W19668691052014 @default.
- W1966869105 countsByYear W19668691052015 @default.
- W1966869105 countsByYear W19668691052017 @default.
- W1966869105 countsByYear W19668691052019 @default.
- W1966869105 countsByYear W19668691052020 @default.
- W1966869105 countsByYear W19668691052021 @default.
- W1966869105 crossrefType "journal-article" @default.
- W1966869105 hasAuthorship W1966869105A5007536976 @default.
- W1966869105 hasAuthorship W1966869105A5013585881 @default.
- W1966869105 hasAuthorship W1966869105A5038599442 @default.
- W1966869105 hasConcept C121332964 @default.
- W1966869105 hasConcept C127413603 @default.
- W1966869105 hasConcept C154945302 @default.
- W1966869105 hasConcept C168167062 @default.
- W1966869105 hasConcept C185592680 @default.
- W1966869105 hasConcept C192562407 @default.
- W1966869105 hasConcept C199360897 @default.
- W1966869105 hasConcept C27438332 @default.
- W1966869105 hasConcept C3019204165 @default.
- W1966869105 hasConcept C41008148 @default.
- W1966869105 hasConcept C41625074 @default.
- W1966869105 hasConcept C42360764 @default.
- W1966869105 hasConcept C43617362 @default.
- W1966869105 hasConcept C50670333 @default.
- W1966869105 hasConcept C55493867 @default.
- W1966869105 hasConcept C58166 @default.
- W1966869105 hasConcept C64452783 @default.
- W1966869105 hasConcept C97355855 @default.
- W1966869105 hasConceptScore W1966869105C121332964 @default.
- W1966869105 hasConceptScore W1966869105C127413603 @default.
- W1966869105 hasConceptScore W1966869105C154945302 @default.
- W1966869105 hasConceptScore W1966869105C168167062 @default.
- W1966869105 hasConceptScore W1966869105C185592680 @default.
- W1966869105 hasConceptScore W1966869105C192562407 @default.
- W1966869105 hasConceptScore W1966869105C199360897 @default.
- W1966869105 hasConceptScore W1966869105C27438332 @default.
- W1966869105 hasConceptScore W1966869105C3019204165 @default.
- W1966869105 hasConceptScore W1966869105C41008148 @default.
- W1966869105 hasConceptScore W1966869105C41625074 @default.
- W1966869105 hasConceptScore W1966869105C42360764 @default.
- W1966869105 hasConceptScore W1966869105C43617362 @default.
- W1966869105 hasConceptScore W1966869105C50670333 @default.
- W1966869105 hasConceptScore W1966869105C55493867 @default.
- W1966869105 hasConceptScore W1966869105C58166 @default.
- W1966869105 hasConceptScore W1966869105C64452783 @default.
- W1966869105 hasConceptScore W1966869105C97355855 @default.