Matches in SemOpenAlex for { <https://semopenalex.org/work/W1966991711> ?p ?o ?g. }
- W1966991711 endingPage "13" @default.
- W1966991711 startingPage "1" @default.
- W1966991711 abstract "The most important problems with exploiting artificial neural networks (ANNs) are to design the network topology, which usually requires an excessive amount of expert’s effort, and to train it. In this paper, a new evolutionary-based algorithm is developed to simultaneously evolve the topology and the connection weights of ANNs by means of a new combination of grammatical evolution (GE) and genetic algorithm (GA). GE is adopted to design the network topology while GA is incorporated for better weight adaptation. The proposed algorithm needs to invest a minimal expert’s effort for customization and is capable of generating any feedforward ANN with one hidden layer. Moreover, due to the fact that the generalization ability of an ANN may decrease because of overfitting problems, the algorithm utilizes a novel adaptive penalty approach to simplify ANNs generated through the evolution process. As a result, it produces much simpler ANNs that have better generalization ability and are easy to implement. The proposed method is tested on some real world classification datasets, and the results are statistically compared against existing methods in the literature. The results indicate that our algorithm outperforms the other methods and provides the best overall performance in terms of the classification accuracy and the number of hidden neurons. The results also present the contribution of the proposed penalty approach in the simplicity and generalization ability of the generated networks." @default.
- W1966991711 created "2016-06-24" @default.
- W1966991711 creator A5010283810 @default.
- W1966991711 creator A5066125124 @default.
- W1966991711 creator A5073080302 @default.
- W1966991711 creator A5081265236 @default.
- W1966991711 date "2015-03-01" @default.
- W1966991711 modified "2023-10-06" @default.
- W1966991711 title "Artificial neural network development by means of a novel combination of grammatical evolution and genetic algorithm" @default.
- W1966991711 cites W1578950828 @default.
- W1966991711 cites W1593481303 @default.
- W1966991711 cites W1965295747 @default.
- W1966991711 cites W1966771362 @default.
- W1966991711 cites W1971259134 @default.
- W1966991711 cites W1977310618 @default.
- W1966991711 cites W1982388409 @default.
- W1966991711 cites W1991745880 @default.
- W1966991711 cites W1992189566 @default.
- W1966991711 cites W2009952448 @default.
- W1966991711 cites W2012027153 @default.
- W1966991711 cites W2012428944 @default.
- W1966991711 cites W2017337590 @default.
- W1966991711 cites W2017561014 @default.
- W1966991711 cites W2023406419 @default.
- W1966991711 cites W2023448113 @default.
- W1966991711 cites W2026316367 @default.
- W1966991711 cites W2028967620 @default.
- W1966991711 cites W2030888282 @default.
- W1966991711 cites W2032442397 @default.
- W1966991711 cites W2040884411 @default.
- W1966991711 cites W2049624713 @default.
- W1966991711 cites W2052234900 @default.
- W1966991711 cites W2059908283 @default.
- W1966991711 cites W2066251678 @default.
- W1966991711 cites W2070665556 @default.
- W1966991711 cites W2072782187 @default.
- W1966991711 cites W2083242967 @default.
- W1966991711 cites W2087327261 @default.
- W1966991711 cites W2100805904 @default.
- W1966991711 cites W2104714048 @default.
- W1966991711 cites W2111762864 @default.
- W1966991711 cites W2111935653 @default.
- W1966991711 cites W2116087031 @default.
- W1966991711 cites W2116422023 @default.
- W1966991711 cites W2119814172 @default.
- W1966991711 cites W2124290836 @default.
- W1966991711 cites W2126137228 @default.
- W1966991711 cites W2128033389 @default.
- W1966991711 cites W2133218851 @default.
- W1966991711 cites W2134514463 @default.
- W1966991711 cites W2135743357 @default.
- W1966991711 cites W2138784882 @default.
- W1966991711 cites W2140229565 @default.
- W1966991711 cites W2145085734 @default.
- W1966991711 cites W2154830650 @default.
- W1966991711 cites W2160422165 @default.
- W1966991711 cites W2165132362 @default.
- W1966991711 cites W2167277498 @default.
- W1966991711 cites W2296218809 @default.
- W1966991711 doi "https://doi.org/10.1016/j.engappai.2014.11.003" @default.
- W1966991711 hasPublicationYear "2015" @default.
- W1966991711 type Work @default.
- W1966991711 sameAs 1966991711 @default.
- W1966991711 citedByCount "118" @default.
- W1966991711 countsByYear W19669917112015 @default.
- W1966991711 countsByYear W19669917112016 @default.
- W1966991711 countsByYear W19669917112017 @default.
- W1966991711 countsByYear W19669917112018 @default.
- W1966991711 countsByYear W19669917112019 @default.
- W1966991711 countsByYear W19669917112020 @default.
- W1966991711 countsByYear W19669917112021 @default.
- W1966991711 countsByYear W19669917112022 @default.
- W1966991711 countsByYear W19669917112023 @default.
- W1966991711 crossrefType "journal-article" @default.
- W1966991711 hasAuthorship W1966991711A5010283810 @default.
- W1966991711 hasAuthorship W1966991711A5066125124 @default.
- W1966991711 hasAuthorship W1966991711A5073080302 @default.
- W1966991711 hasAuthorship W1966991711A5081265236 @default.
- W1966991711 hasConcept C11413529 @default.
- W1966991711 hasConcept C119857082 @default.
- W1966991711 hasConcept C134306372 @default.
- W1966991711 hasConcept C154945302 @default.
- W1966991711 hasConcept C159149176 @default.
- W1966991711 hasConcept C177148314 @default.
- W1966991711 hasConcept C22019652 @default.
- W1966991711 hasConcept C33923547 @default.
- W1966991711 hasConcept C41008148 @default.
- W1966991711 hasConcept C50644808 @default.
- W1966991711 hasConcept C8880873 @default.
- W1966991711 hasConceptScore W1966991711C11413529 @default.
- W1966991711 hasConceptScore W1966991711C119857082 @default.
- W1966991711 hasConceptScore W1966991711C134306372 @default.
- W1966991711 hasConceptScore W1966991711C154945302 @default.
- W1966991711 hasConceptScore W1966991711C159149176 @default.
- W1966991711 hasConceptScore W1966991711C177148314 @default.
- W1966991711 hasConceptScore W1966991711C22019652 @default.
- W1966991711 hasConceptScore W1966991711C33923547 @default.
- W1966991711 hasConceptScore W1966991711C41008148 @default.