Matches in SemOpenAlex for { <https://semopenalex.org/work/W1966992005> ?p ?o ?g. }
- W1966992005 endingPage "1230" @default.
- W1966992005 startingPage "1212" @default.
- W1966992005 abstract "Fracture networks control the permeability of many reservoirs. Since the fracture patterns of petroleum reservoirs in situ are difficult to study in detail, field analogues are very important for understanding their fracture-related permeability. Here we present the results of a study of the fracture system of carbonate rocks of Lower Cretaceous age in a quarry associated with the damage zone and fault core of a major fault zone on the Gargano Peninsula in South Italy. We measured the attitude of 1541 fractures and faults along several vertical and horizontal scan lines. There are two main fracture sets: one strikes between E–W and ESE–WNW, the other NNE–SSW. A total of 675 fracture-spacing measurements indicate log-normal spacing distributions, with an arithmetic mean fracture spacing of 0.29 m and a median of 0.15 m. The data, plotted on a log–log plot, suggest three main spacing subpopulations, each of which follows approximately a power law with different fractal dimensions. Subpopulation 1, where the spacing ranges from 1 to 10 cm and the straight-line slope D (“fractal dimension”) is 0.20, represents fractures confined to laminated carbonate mudstones (multilayers) that form the microbial mat deposits of a peritidal cycle. Subpopulation 2, where the spacing ranges from 11 to 55 cm and D is 0.77, represents fractures confined to thicker layers, forming a part of a peritidal cycle, the contacts of which are marked by stylolites. Subpopulation 3, where the spacing ranges from 56 to 243 cm and D is 2.81, represents fractures that dissect comparatively thick units of an entire peritidal cycle. For the spacing, the minimum coefficient of variation, Cv, defined as standard deviation divided by the mean, is 1.00 (essentially randomly spaced fractures) while its maximum Cv is 1.62, suggesting that some fractures form clusters, some clusters being denser than others. The clusters, composed of fractures with varying attitudes and therefore commonly intersecting, are likely to contribute significantly to the overall permeability of the carbonate rock. Fracture-aperture (opening) data (N = 324) also show a log-normal size distribution, with a mean opening of 1.01 cm and median of 0.29 cm. Log–log plots indicate that a part of this data groups into two subpopulations, I and II, each of which follows approximately a power law. The straight-line slope D (“the fractal dimension”) of subpopulation I is 0.46, whereas that of subpopulation II is 1.49. We present boundary-element models showing that laminated carbonate mudstones and their contacts modify the local stress fields so as to encourage fracture offset and, commonly, arrest. Our results also show that when a fluid-driven subpopulation 2 fracture approaches subpopulation 1 fractures, the induced tensile stresses may result in the opening up of many of the subpopulation 1 fractures directly above the tip of the subpopulation 2 fractures. If, in addition, the contacts between the multilayers are weak, they also tend to open up, thus generating a large interconnected cluster of vertical fractures and horizontal contacts. The results suggest that the tensile stresses induced by a comparatively large fluid-driven subpopulation 2 fracture may contribute to the formation of an interconnected cluster of subpopulation 1 fractures and associated contacts, thereby significantly increasing the permeability of the carbonate rock." @default.
- W1966992005 created "2016-06-24" @default.
- W1966992005 creator A5029667020 @default.
- W1966992005 creator A5035928980 @default.
- W1966992005 creator A5043286923 @default.
- W1966992005 date "2010-09-01" @default.
- W1966992005 modified "2023-10-02" @default.
- W1966992005 title "How fracture systems affect permeability development in shallow-water carbonate rocks: An example from the Gargano Peninsula, Italy" @default.
- W1966992005 cites W1506995942 @default.
- W1966992005 cites W1963864474 @default.
- W1966992005 cites W1964247897 @default.
- W1966992005 cites W1976963882 @default.
- W1966992005 cites W1982419461 @default.
- W1966992005 cites W1991818708 @default.
- W1966992005 cites W1996407105 @default.
- W1966992005 cites W1997798083 @default.
- W1966992005 cites W1998098307 @default.
- W1966992005 cites W2001148017 @default.
- W1966992005 cites W2001164270 @default.
- W1966992005 cites W2001675220 @default.
- W1966992005 cites W2007668228 @default.
- W1966992005 cites W2014404385 @default.
- W1966992005 cites W2022424435 @default.
- W1966992005 cites W2022744975 @default.
- W1966992005 cites W2024720967 @default.
- W1966992005 cites W2028511928 @default.
- W1966992005 cites W2034864247 @default.
- W1966992005 cites W2034892466 @default.
- W1966992005 cites W2041856609 @default.
- W1966992005 cites W2041859982 @default.
- W1966992005 cites W2048577915 @default.
- W1966992005 cites W2055239489 @default.
- W1966992005 cites W2056630263 @default.
- W1966992005 cites W2063302333 @default.
- W1966992005 cites W2071878742 @default.
- W1966992005 cites W2080215198 @default.
- W1966992005 cites W2081368255 @default.
- W1966992005 cites W2089801426 @default.
- W1966992005 cites W2090276952 @default.
- W1966992005 cites W2093702694 @default.
- W1966992005 cites W2094856989 @default.
- W1966992005 cites W2102855159 @default.
- W1966992005 cites W2103298362 @default.
- W1966992005 cites W2106179058 @default.
- W1966992005 cites W2115619622 @default.
- W1966992005 cites W2116003371 @default.
- W1966992005 cites W2120285078 @default.
- W1966992005 cites W2121559843 @default.
- W1966992005 cites W2126236484 @default.
- W1966992005 cites W2151490301 @default.
- W1966992005 cites W2153098560 @default.
- W1966992005 doi "https://doi.org/10.1016/j.jsg.2009.05.009" @default.
- W1966992005 hasPublicationYear "2010" @default.
- W1966992005 type Work @default.
- W1966992005 sameAs 1966992005 @default.
- W1966992005 citedByCount "60" @default.
- W1966992005 countsByYear W19669920052012 @default.
- W1966992005 countsByYear W19669920052013 @default.
- W1966992005 countsByYear W19669920052014 @default.
- W1966992005 countsByYear W19669920052015 @default.
- W1966992005 countsByYear W19669920052016 @default.
- W1966992005 countsByYear W19669920052017 @default.
- W1966992005 countsByYear W19669920052018 @default.
- W1966992005 countsByYear W19669920052019 @default.
- W1966992005 countsByYear W19669920052020 @default.
- W1966992005 countsByYear W19669920052021 @default.
- W1966992005 countsByYear W19669920052022 @default.
- W1966992005 countsByYear W19669920052023 @default.
- W1966992005 crossrefType "journal-article" @default.
- W1966992005 hasAuthorship W1966992005A5029667020 @default.
- W1966992005 hasAuthorship W1966992005A5035928980 @default.
- W1966992005 hasAuthorship W1966992005A5043286923 @default.
- W1966992005 hasConcept C114793014 @default.
- W1966992005 hasConcept C120882062 @default.
- W1966992005 hasConcept C12294951 @default.
- W1966992005 hasConcept C123588078 @default.
- W1966992005 hasConcept C127313418 @default.
- W1966992005 hasConcept C130452526 @default.
- W1966992005 hasConcept C133916931 @default.
- W1966992005 hasConcept C134306372 @default.
- W1966992005 hasConcept C144027150 @default.
- W1966992005 hasConcept C151730666 @default.
- W1966992005 hasConcept C166957645 @default.
- W1966992005 hasConcept C17409809 @default.
- W1966992005 hasConcept C187320778 @default.
- W1966992005 hasConcept C191897082 @default.
- W1966992005 hasConcept C192562407 @default.
- W1966992005 hasConcept C19320362 @default.
- W1966992005 hasConcept C199289684 @default.
- W1966992005 hasConcept C26546657 @default.
- W1966992005 hasConcept C2777232088 @default.
- W1966992005 hasConcept C2780659211 @default.
- W1966992005 hasConcept C33923547 @default.
- W1966992005 hasConcept C40636538 @default.
- W1966992005 hasConcept C41625074 @default.
- W1966992005 hasConcept C43369102 @default.
- W1966992005 hasConcept C54355233 @default.
- W1966992005 hasConcept C5900021 @default.