Matches in SemOpenAlex for { <https://semopenalex.org/work/W1967068217> ?p ?o ?g. }
- W1967068217 endingPage "112" @default.
- W1967068217 startingPage "96" @default.
- W1967068217 abstract "Abstract Although oil cracking has been documented as one of the important sources of gas in many overmature marine sedimentary basins, the chemical and carbon isotopic signatures of gases of this origin are still open to question. In this study a Cambrian crude oil from the central Tarim basin, along with its main separated fractions (saturates, aromatics and asphaltenes), were pyrolyzed in sealed gold tubes to investigate how generated gases vary in chemical and carbon isotopic composition and how this variation would influence the genetic interpretation of oil cracking gas. The results indicate that the gases from cracking of aromatics and asphaltenes are much drier and more enriched in 13C than the gases from the cracking of saturates and crude oil at the same level of thermal maturity. In the experimental run of 20 °C/h, the dryness index of the gases (defined as the volume percentage of C1 in C1–5) from the cracking of saturates ranges from 26.2–90.6% with the methane carbon isotope change ranging from −54.8‰ to −35.5‰, whereas the dryness index is never lower than 60.6% for the gases from the cracking of aromatics with methane carbon isotope ranging from −39.9‰ to −32.2‰. Correspondingly, experimental data for the four samples plot in different areas in diagrams designed to distinguish oil cracking gas from kerogen cracking gas, such as ln(C2/C3) vs. δ13C2–δ13C3 and δ13C1 vs. δ13C2–δ13C3, indicating compositional variability of crude oil could assert an important influence in these diagrams. Therefore it is prudent to bring other geological constraints into consideration to avoid misinterpretation. The kinetic parameters for the bulk generation of C1–5 gas and the methane carbon isotope fractionation extrapolated to geological conditions of 2 °C/Ma and an initial temperature of 50 °C show that the temperatures of C1–5 gas generation from the aromatics and asphaltenes are lower than those from the saturates and crude oil due to their lower activation energies and frequency factors. Generation of C1–5 gases from the aromatics is modeled to be initiated about 122 °C whereas the initiation temperature for the saturates sample is 176 °C. Below 189 °C (EasyRo = 1.8%), the yields of C1–5 gases follow the order: aromatics > asphaltenes > crude oil > saturates. At similar thermal maturity levels, the methane carbon isotopic compositions are significantly different for the four samples, with an order of 13C enrichment: aromatics > asphaltenes > crude oil > saturates, however the difference in methane carbon isotopes becomes smaller with increasing temperature. This indicates that methane carbon isotopic values can be significantly different for gases cracked from oils that are compositionally diverse, especially in the early stage of methane generation." @default.
- W1967068217 created "2016-06-24" @default.
- W1967068217 creator A5005439774 @default.
- W1967068217 creator A5008347345 @default.
- W1967068217 creator A5048661864 @default.
- W1967068217 creator A5074462064 @default.
- W1967068217 date "2012-05-01" @default.
- W1967068217 modified "2023-10-16" @default.
- W1967068217 title "An experimental comparison of gas generation from three oil fractions: Implications for the chemical and stable carbon isotopic signatures of oil cracking gas" @default.
- W1967068217 cites W1664607627 @default.
- W1967068217 cites W1963493222 @default.
- W1967068217 cites W1972781295 @default.
- W1967068217 cites W1975363075 @default.
- W1967068217 cites W1975942647 @default.
- W1967068217 cites W1976036546 @default.
- W1967068217 cites W1977213733 @default.
- W1967068217 cites W1977997081 @default.
- W1967068217 cites W1981259692 @default.
- W1967068217 cites W1983940179 @default.
- W1967068217 cites W1986674447 @default.
- W1967068217 cites W1986843887 @default.
- W1967068217 cites W1989967888 @default.
- W1967068217 cites W1993688738 @default.
- W1967068217 cites W1995603005 @default.
- W1967068217 cites W1995955104 @default.
- W1967068217 cites W1997373778 @default.
- W1967068217 cites W2000338999 @default.
- W1967068217 cites W2002321952 @default.
- W1967068217 cites W2004538472 @default.
- W1967068217 cites W2005955991 @default.
- W1967068217 cites W2006284763 @default.
- W1967068217 cites W2006868829 @default.
- W1967068217 cites W2008087389 @default.
- W1967068217 cites W2009889031 @default.
- W1967068217 cites W2012587957 @default.
- W1967068217 cites W2016016110 @default.
- W1967068217 cites W2019311000 @default.
- W1967068217 cites W2021603978 @default.
- W1967068217 cites W2025270360 @default.
- W1967068217 cites W2025940705 @default.
- W1967068217 cites W2026657268 @default.
- W1967068217 cites W2027394456 @default.
- W1967068217 cites W2029301276 @default.
- W1967068217 cites W2030310824 @default.
- W1967068217 cites W2031721269 @default.
- W1967068217 cites W2036168271 @default.
- W1967068217 cites W2039000423 @default.
- W1967068217 cites W2039471685 @default.
- W1967068217 cites W2040660746 @default.
- W1967068217 cites W2042031382 @default.
- W1967068217 cites W2042550843 @default.
- W1967068217 cites W2043723175 @default.
- W1967068217 cites W2044073149 @default.
- W1967068217 cites W2045149838 @default.
- W1967068217 cites W2047334413 @default.
- W1967068217 cites W2047522563 @default.
- W1967068217 cites W2050257384 @default.
- W1967068217 cites W2052083075 @default.
- W1967068217 cites W2052572989 @default.
- W1967068217 cites W2054086754 @default.
- W1967068217 cites W2056460447 @default.
- W1967068217 cites W2060408276 @default.
- W1967068217 cites W2062891295 @default.
- W1967068217 cites W2064569045 @default.
- W1967068217 cites W2064649658 @default.
- W1967068217 cites W2065560444 @default.
- W1967068217 cites W2066692013 @default.
- W1967068217 cites W2072431355 @default.
- W1967068217 cites W2073280118 @default.
- W1967068217 cites W2076560014 @default.
- W1967068217 cites W2089205576 @default.
- W1967068217 cites W2089514405 @default.
- W1967068217 cites W2090435241 @default.
- W1967068217 cites W2091132083 @default.
- W1967068217 cites W2093505231 @default.
- W1967068217 cites W2094128575 @default.
- W1967068217 cites W2103201482 @default.
- W1967068217 cites W2106718557 @default.
- W1967068217 cites W2113418873 @default.
- W1967068217 cites W2116638232 @default.
- W1967068217 cites W2117563758 @default.
- W1967068217 cites W2127133205 @default.
- W1967068217 cites W2161643702 @default.
- W1967068217 cites W2163289772 @default.
- W1967068217 cites W2170270268 @default.
- W1967068217 cites W2172269417 @default.
- W1967068217 cites W4231529815 @default.
- W1967068217 doi "https://doi.org/10.1016/j.orggeochem.2012.01.013" @default.
- W1967068217 hasPublicationYear "2012" @default.
- W1967068217 type Work @default.
- W1967068217 sameAs 1967068217 @default.
- W1967068217 citedByCount "65" @default.
- W1967068217 countsByYear W19670682172012 @default.
- W1967068217 countsByYear W19670682172013 @default.
- W1967068217 countsByYear W19670682172014 @default.
- W1967068217 countsByYear W19670682172015 @default.
- W1967068217 countsByYear W19670682172016 @default.
- W1967068217 countsByYear W19670682172017 @default.