Matches in SemOpenAlex for { <https://semopenalex.org/work/W1967146723> ?p ?o ?g. }
- W1967146723 endingPage "5008" @default.
- W1967146723 startingPage "4997" @default.
- W1967146723 abstract "In traditional compressed sensing theory, the dictionary matrix is given a priori, whereas in real applications this matrix suffers from random noise and fluctuations. In this paper, we consider a signal model where each column in the dictionary matrix is affected by a structured noise. This formulation is common in direction-of-arrival (DOA) estimation of off-grid targets, encountered in both radar systems and array processing. We propose to use joint sparse signal recovery to solve the compressed sensing problem with structured dictionary mismatches and also give an analytical performance bound on this joint sparse recovery. We show that, under mild conditions, the reconstruction error of the original sparse signal is bounded by both the sparsity and the noise level in the measurement model. Moreover, we implement fast first-order algorithms to speed up the computing process. Numerical examples demonstrate the good performance of the proposed algorithm and also show that the joint-sparse recovery method yields a better reconstruction result than existing methods. By implementing the joint sparse recovery method, the accuracy and efficiency of DOA estimation are improved in both passive and active sensing cases." @default.
- W1967146723 created "2016-06-24" @default.
- W1967146723 creator A5031212309 @default.
- W1967146723 creator A5036100285 @default.
- W1967146723 creator A5064034692 @default.
- W1967146723 date "2014-10-01" @default.
- W1967146723 modified "2023-10-10" @default.
- W1967146723 title "Joint Sparse Recovery Method for Compressed Sensing With Structured Dictionary Mismatches" @default.
- W1967146723 cites W1953936588 @default.
- W1967146723 cites W1972010412 @default.
- W1967146723 cites W1980874175 @default.
- W1967146723 cites W1984847119 @default.
- W1967146723 cites W1989476724 @default.
- W1967146723 cites W1990791259 @default.
- W1967146723 cites W1997301483 @default.
- W1967146723 cites W2015418199 @default.
- W1967146723 cites W2030161963 @default.
- W1967146723 cites W2078204800 @default.
- W1967146723 cites W2092199153 @default.
- W1967146723 cites W2098174516 @default.
- W1967146723 cites W2100556411 @default.
- W1967146723 cites W2109449402 @default.
- W1967146723 cites W2119667497 @default.
- W1967146723 cites W2120991191 @default.
- W1967146723 cites W2123457453 @default.
- W1967146723 cites W2129638195 @default.
- W1967146723 cites W2135780853 @default.
- W1967146723 cites W2143148420 @default.
- W1967146723 cites W2145096794 @default.
- W1967146723 cites W2145841867 @default.
- W1967146723 cites W2147276092 @default.
- W1967146723 cites W2162876243 @default.
- W1967146723 cites W2164390589 @default.
- W1967146723 cites W2544827558 @default.
- W1967146723 cites W3122639836 @default.
- W1967146723 cites W3124114587 @default.
- W1967146723 cites W3141391850 @default.
- W1967146723 cites W4250589301 @default.
- W1967146723 cites W4300263211 @default.
- W1967146723 doi "https://doi.org/10.1109/tsp.2014.2343940" @default.
- W1967146723 hasPublicationYear "2014" @default.
- W1967146723 type Work @default.
- W1967146723 sameAs 1967146723 @default.
- W1967146723 citedByCount "139" @default.
- W1967146723 countsByYear W19671467232012 @default.
- W1967146723 countsByYear W19671467232014 @default.
- W1967146723 countsByYear W19671467232015 @default.
- W1967146723 countsByYear W19671467232016 @default.
- W1967146723 countsByYear W19671467232017 @default.
- W1967146723 countsByYear W19671467232018 @default.
- W1967146723 countsByYear W19671467232019 @default.
- W1967146723 countsByYear W19671467232020 @default.
- W1967146723 countsByYear W19671467232021 @default.
- W1967146723 countsByYear W19671467232022 @default.
- W1967146723 countsByYear W19671467232023 @default.
- W1967146723 crossrefType "journal-article" @default.
- W1967146723 hasAuthorship W1967146723A5031212309 @default.
- W1967146723 hasAuthorship W1967146723A5036100285 @default.
- W1967146723 hasAuthorship W1967146723A5064034692 @default.
- W1967146723 hasBestOaLocation W19671467232 @default.
- W1967146723 hasConcept C104267543 @default.
- W1967146723 hasConcept C106487976 @default.
- W1967146723 hasConcept C111472728 @default.
- W1967146723 hasConcept C11413529 @default.
- W1967146723 hasConcept C115961682 @default.
- W1967146723 hasConcept C121332964 @default.
- W1967146723 hasConcept C124066611 @default.
- W1967146723 hasConcept C124851039 @default.
- W1967146723 hasConcept C127413603 @default.
- W1967146723 hasConcept C138885662 @default.
- W1967146723 hasConcept C13944312 @default.
- W1967146723 hasConcept C153180895 @default.
- W1967146723 hasConcept C154945302 @default.
- W1967146723 hasConcept C159985019 @default.
- W1967146723 hasConcept C163716315 @default.
- W1967146723 hasConcept C170154142 @default.
- W1967146723 hasConcept C18555067 @default.
- W1967146723 hasConcept C192562407 @default.
- W1967146723 hasConcept C199360897 @default.
- W1967146723 hasConcept C2779843651 @default.
- W1967146723 hasConcept C2989281035 @default.
- W1967146723 hasConcept C41008148 @default.
- W1967146723 hasConcept C554190296 @default.
- W1967146723 hasConcept C56372850 @default.
- W1967146723 hasConcept C62520636 @default.
- W1967146723 hasConcept C70958404 @default.
- W1967146723 hasConcept C75553542 @default.
- W1967146723 hasConcept C76155785 @default.
- W1967146723 hasConcept C99498987 @default.
- W1967146723 hasConceptScore W1967146723C104267543 @default.
- W1967146723 hasConceptScore W1967146723C106487976 @default.
- W1967146723 hasConceptScore W1967146723C111472728 @default.
- W1967146723 hasConceptScore W1967146723C11413529 @default.
- W1967146723 hasConceptScore W1967146723C115961682 @default.
- W1967146723 hasConceptScore W1967146723C121332964 @default.
- W1967146723 hasConceptScore W1967146723C124066611 @default.
- W1967146723 hasConceptScore W1967146723C124851039 @default.
- W1967146723 hasConceptScore W1967146723C127413603 @default.