Matches in SemOpenAlex for { <https://semopenalex.org/work/W1967226502> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W1967226502 endingPage "42" @default.
- W1967226502 startingPage "22" @default.
- W1967226502 abstract "The identification of a suitable clustering algorithm to partition data and assessment of the validity of the resultant partitioning are ongoing quests in unsupervised learning. In this study, a fuzzy granulation–degranulation criterion is proposed to evaluate the goodness of a fuzzy partitioning of the data. This, in turn, is used to determine the appropriate clustering algorithm suitable for a particular data set. In general, the quality of a partitioning is measured by computing the variance within it, which is a measure of compactness of the obtained partitioning. Here a new error function, which reflects how well the computed cluster centers represent the whole data set, is used as the goodness measure of the obtained partitioning. Thus a clustering algorithm, providing a good set of cluster centers which approximate well the whole data set, is considered to be the most suited. Thereafter this new fuzzy granulation–degranulation criterion is used to develop six new cluster validity indices. These indices mimic the definitions of the existing and well-known cluster validity indices, such as PBM-index, XB-index, PS-index, FS-index, K-index and SV-index, but use the new fuzzy granulation–degranulation based error function instead of cluster compactness. In order to evaluate the effectiveness of the proposed error function in correctly identifying the appropriate clustering algorithm for a particular data set, eight well-known clustering algorithms, K-means, Fuzzy C-means, GAK-means (genetic algorithm based K-means algorithm), a newly developed genetic point symmetry based clustering technique (GAPS-clustering), Average Linkage clustering algorithm, Expectation Maximization (EM) clustering algorithm, Self-Organizing Map (SOM) and Spectral clustering technique are evaluated on a set of six artificially generated and six real-life data sets. Results show that GAK-means is the most appropriate for most of the data sets used for the experiments. Thereafter the effectiveness of the proposed cluster validity indices in identifying the appropriate number of clusters automatically from different data sets are shown for above mentioned 12 data sets. For the purpose of comparison, results obtained with the original versions of the proposed cluster validity indices and results obtained by a density based clustering technique are also presented." @default.
- W1967226502 created "2016-06-24" @default.
- W1967226502 creator A5003799782 @default.
- W1967226502 creator A5036061149 @default.
- W1967226502 creator A5060797340 @default.
- W1967226502 date "2011-05-01" @default.
- W1967226502 modified "2023-09-26" @default.
- W1967226502 title "Use of a fuzzy granulation–degranulation criterion for assessing cluster validity" @default.
- W1967226502 cites W1975794422 @default.
- W1967226502 cites W1983753875 @default.
- W1967226502 cites W1990368529 @default.
- W1967226502 cites W1990771923 @default.
- W1967226502 cites W1996747841 @default.
- W1967226502 cites W1999075329 @default.
- W1967226502 cites W2038325295 @default.
- W1967226502 cites W2045848691 @default.
- W1967226502 cites W2051224630 @default.
- W1967226502 cites W2054232099 @default.
- W1967226502 cites W2070771945 @default.
- W1967226502 cites W2071965987 @default.
- W1967226502 cites W2090365396 @default.
- W1967226502 cites W2099189653 @default.
- W1967226502 cites W2108323654 @default.
- W1967226502 cites W2134437265 @default.
- W1967226502 cites W2157240557 @default.
- W1967226502 cites W2164947855 @default.
- W1967226502 cites W4238718472 @default.
- W1967226502 cites W4244786066 @default.
- W1967226502 doi "https://doi.org/10.1016/j.fss.2010.11.015" @default.
- W1967226502 hasPublicationYear "2011" @default.
- W1967226502 type Work @default.
- W1967226502 sameAs 1967226502 @default.
- W1967226502 citedByCount "19" @default.
- W1967226502 countsByYear W19672265022012 @default.
- W1967226502 countsByYear W19672265022013 @default.
- W1967226502 countsByYear W19672265022014 @default.
- W1967226502 countsByYear W19672265022015 @default.
- W1967226502 countsByYear W19672265022016 @default.
- W1967226502 countsByYear W19672265022017 @default.
- W1967226502 countsByYear W19672265022018 @default.
- W1967226502 countsByYear W19672265022019 @default.
- W1967226502 countsByYear W19672265022020 @default.
- W1967226502 countsByYear W19672265022021 @default.
- W1967226502 countsByYear W19672265022023 @default.
- W1967226502 crossrefType "journal-article" @default.
- W1967226502 hasAuthorship W1967226502A5003799782 @default.
- W1967226502 hasAuthorship W1967226502A5036061149 @default.
- W1967226502 hasAuthorship W1967226502A5060797340 @default.
- W1967226502 hasConcept C105795698 @default.
- W1967226502 hasConcept C111442797 @default.
- W1967226502 hasConcept C11413529 @default.
- W1967226502 hasConcept C124101348 @default.
- W1967226502 hasConcept C153180895 @default.
- W1967226502 hasConcept C154945302 @default.
- W1967226502 hasConcept C17212007 @default.
- W1967226502 hasConcept C33923547 @default.
- W1967226502 hasConcept C41008148 @default.
- W1967226502 hasConcept C42011625 @default.
- W1967226502 hasConcept C58166 @default.
- W1967226502 hasConcept C73555534 @default.
- W1967226502 hasConceptScore W1967226502C105795698 @default.
- W1967226502 hasConceptScore W1967226502C111442797 @default.
- W1967226502 hasConceptScore W1967226502C11413529 @default.
- W1967226502 hasConceptScore W1967226502C124101348 @default.
- W1967226502 hasConceptScore W1967226502C153180895 @default.
- W1967226502 hasConceptScore W1967226502C154945302 @default.
- W1967226502 hasConceptScore W1967226502C17212007 @default.
- W1967226502 hasConceptScore W1967226502C33923547 @default.
- W1967226502 hasConceptScore W1967226502C41008148 @default.
- W1967226502 hasConceptScore W1967226502C42011625 @default.
- W1967226502 hasConceptScore W1967226502C58166 @default.
- W1967226502 hasConceptScore W1967226502C73555534 @default.
- W1967226502 hasIssue "1" @default.
- W1967226502 hasLocation W19672265021 @default.
- W1967226502 hasOpenAccess W1967226502 @default.
- W1967226502 hasPrimaryLocation W19672265021 @default.
- W1967226502 hasRelatedWork W1984620732 @default.
- W1967226502 hasRelatedWork W2160396543 @default.
- W1967226502 hasRelatedWork W2165254090 @default.
- W1967226502 hasRelatedWork W2406667633 @default.
- W1967226502 hasRelatedWork W2542243181 @default.
- W1967226502 hasRelatedWork W3036015371 @default.
- W1967226502 hasRelatedWork W3066205586 @default.
- W1967226502 hasRelatedWork W3096331175 @default.
- W1967226502 hasRelatedWork W4245045784 @default.
- W1967226502 hasRelatedWork W4253705005 @default.
- W1967226502 hasVolume "170" @default.
- W1967226502 isParatext "false" @default.
- W1967226502 isRetracted "false" @default.
- W1967226502 magId "1967226502" @default.
- W1967226502 workType "article" @default.