Matches in SemOpenAlex for { <https://semopenalex.org/work/W1967360918> ?p ?o ?g. }
- W1967360918 endingPage "237" @default.
- W1967360918 startingPage "187" @default.
- W1967360918 abstract "This paper develops a unified algebraic theory of logic and probability based upon an initial Boolean algebra (logic) of propositions together with its extensionally associated Boolean algebra of models (probabilistic events) that satisfy the axioms of the Boolean algebra of propositions. A proposition may be true in some models and false in others, but each model must unambiguously assign “ true” or “ false” to each proposition. Thus the examples (models) in which different propositions are true may be all, some, or none according as those propositions are necessary, possible, or impossible. A probability measure P on the collection of models (events) induces a probability measure on the propositions. The crucial “if-then” relation is defined so that P(if p then q) equals P(q¦p), the conditional probability of q given p. This (conditional) probability is less than the probability of the material conditional, “q or not p”, unless P(p)=1 or P(q¦p)=1. At these two extremes the two propositional constructions coalesce. Thus an additional relation, (q¦p), is needed in logic and probability, namely “q given p”. This is accomplished in the algebraic logic generated by the various sum ideals (entailments) of various propositions that may serve as the explicit condition of a conditional proposition (q¦p). The corresponding relation, (B¦A), in the model realm defines the notion of a conditional event. In this context of algebraic logic and model theory, a new algebraic structure called the conditional closure LL of a Boolean logic L is defined, consisting of the ordered pairs (q¦p) of all propositions of L excluding those for which the condition p is equivalent ( = ) to 0, that is, impossible. The conditional closure is not altogether a Boolean algebra, not altogether distributive for instance, but it has many subalgebras that are Boolean, including L itself. This paper contains partially assumed formulas for operating on the conditional propositions, (q¦p), using “and”, “or”, “not”, and, of course, “if-then”. This allows complex conditional expressions to be reduced to simple conditionals of Boolean propositions, which have a conditional probability. An example calculation from the dice table illustrates how to simplify a compound conditional proposition and compute its probability. The structure of LL is explored, including the finite conditional closures of finite Boolean logics. Formulas are given for the probabilistic difference between familiar conditional propositions that are equivalent in the two-valued logic (where all propositions are either necessary or impossible) but not equivalent in the conditional closure of a logic with possible propositions. The probability that a proposition p is a theorem (true in all models) is contrasted from the probability of the models in which the proposition is true, the latter being P(p) while the former is P(p =1). This leads to a natural connection with fuzzy set theory, since “p =1” can also be expressed as “p ϵ (1)”, where (1) is the sum ideal (filter) of necessary propositions given the Boolean axioms. This paper ends with a representation of each conditional proposition (q¦p) as the P-measurable two-valued truth function of q restricted to those models that satisfy p." @default.
- W1967360918 created "2016-06-24" @default.
- W1967360918 creator A5067364086 @default.
- W1967360918 date "1987-08-01" @default.
- W1967360918 modified "2023-10-16" @default.
- W1967360918 title "An algebraic synthesis of the foundations of logic and probability" @default.
- W1967360918 cites W1978085127 @default.
- W1967360918 cites W2035568109 @default.
- W1967360918 cites W2038319718 @default.
- W1967360918 cites W2055513345 @default.
- W1967360918 cites W2071039357 @default.
- W1967360918 cites W2083716186 @default.
- W1967360918 cites W2095224843 @default.
- W1967360918 cites W2319549361 @default.
- W1967360918 cites W2331346174 @default.
- W1967360918 cites W4206427571 @default.
- W1967360918 cites W4211007335 @default.
- W1967360918 cites W4230900352 @default.
- W1967360918 doi "https://doi.org/10.1016/0020-0255(87)90023-5" @default.
- W1967360918 hasPublicationYear "1987" @default.
- W1967360918 type Work @default.
- W1967360918 sameAs 1967360918 @default.
- W1967360918 citedByCount "91" @default.
- W1967360918 countsByYear W19673609182012 @default.
- W1967360918 countsByYear W19673609182013 @default.
- W1967360918 countsByYear W19673609182015 @default.
- W1967360918 countsByYear W19673609182016 @default.
- W1967360918 countsByYear W19673609182017 @default.
- W1967360918 countsByYear W19673609182018 @default.
- W1967360918 countsByYear W19673609182020 @default.
- W1967360918 countsByYear W19673609182021 @default.
- W1967360918 countsByYear W19673609182022 @default.
- W1967360918 countsByYear W19673609182023 @default.
- W1967360918 crossrefType "journal-article" @default.
- W1967360918 hasAuthorship W1967360918A5067364086 @default.
- W1967360918 hasConcept C103982235 @default.
- W1967360918 hasConcept C105795698 @default.
- W1967360918 hasConcept C107673813 @default.
- W1967360918 hasConcept C111472728 @default.
- W1967360918 hasConcept C118615104 @default.
- W1967360918 hasConcept C134306372 @default.
- W1967360918 hasConcept C136119220 @default.
- W1967360918 hasConcept C138885662 @default.
- W1967360918 hasConcept C149441793 @default.
- W1967360918 hasConcept C167729594 @default.
- W1967360918 hasConcept C197096303 @default.
- W1967360918 hasConcept C199360897 @default.
- W1967360918 hasConcept C202444582 @default.
- W1967360918 hasConcept C21031990 @default.
- W1967360918 hasConcept C2524010 @default.
- W1967360918 hasConcept C2777152325 @default.
- W1967360918 hasConcept C33923547 @default.
- W1967360918 hasConcept C39685927 @default.
- W1967360918 hasConcept C41008148 @default.
- W1967360918 hasConcept C44492722 @default.
- W1967360918 hasConcept C46274116 @default.
- W1967360918 hasConcept C49698424 @default.
- W1967360918 hasConcept C49937458 @default.
- W1967360918 hasConcept C57830394 @default.
- W1967360918 hasConcept C69562738 @default.
- W1967360918 hasConcept C86523455 @default.
- W1967360918 hasConcept C9376300 @default.
- W1967360918 hasConceptScore W1967360918C103982235 @default.
- W1967360918 hasConceptScore W1967360918C105795698 @default.
- W1967360918 hasConceptScore W1967360918C107673813 @default.
- W1967360918 hasConceptScore W1967360918C111472728 @default.
- W1967360918 hasConceptScore W1967360918C118615104 @default.
- W1967360918 hasConceptScore W1967360918C134306372 @default.
- W1967360918 hasConceptScore W1967360918C136119220 @default.
- W1967360918 hasConceptScore W1967360918C138885662 @default.
- W1967360918 hasConceptScore W1967360918C149441793 @default.
- W1967360918 hasConceptScore W1967360918C167729594 @default.
- W1967360918 hasConceptScore W1967360918C197096303 @default.
- W1967360918 hasConceptScore W1967360918C199360897 @default.
- W1967360918 hasConceptScore W1967360918C202444582 @default.
- W1967360918 hasConceptScore W1967360918C21031990 @default.
- W1967360918 hasConceptScore W1967360918C2524010 @default.
- W1967360918 hasConceptScore W1967360918C2777152325 @default.
- W1967360918 hasConceptScore W1967360918C33923547 @default.
- W1967360918 hasConceptScore W1967360918C39685927 @default.
- W1967360918 hasConceptScore W1967360918C41008148 @default.
- W1967360918 hasConceptScore W1967360918C44492722 @default.
- W1967360918 hasConceptScore W1967360918C46274116 @default.
- W1967360918 hasConceptScore W1967360918C49698424 @default.
- W1967360918 hasConceptScore W1967360918C49937458 @default.
- W1967360918 hasConceptScore W1967360918C57830394 @default.
- W1967360918 hasConceptScore W1967360918C69562738 @default.
- W1967360918 hasConceptScore W1967360918C86523455 @default.
- W1967360918 hasConceptScore W1967360918C9376300 @default.
- W1967360918 hasIssue "3" @default.
- W1967360918 hasLocation W19673609181 @default.
- W1967360918 hasOpenAccess W1967360918 @default.
- W1967360918 hasPrimaryLocation W19673609181 @default.
- W1967360918 hasRelatedWork W193767348 @default.
- W1967360918 hasRelatedWork W1967360918 @default.
- W1967360918 hasRelatedWork W2534198467 @default.
- W1967360918 hasRelatedWork W2954485692 @default.
- W1967360918 hasRelatedWork W4235623166 @default.