Matches in SemOpenAlex for { <https://semopenalex.org/work/W1967413900> ?p ?o ?g. }
- W1967413900 endingPage "477" @default.
- W1967413900 startingPage "464" @default.
- W1967413900 abstract "One of the requirements for enhanced productivity by the animal culture systems used in biotechnology is the direct assessment of the metabolic rate by on-line biosensors. Based on the fact that cell growth is associated with an enthalpy change, it is shown that the specific heat flow rate is stoichiometrically related to the net specific rates of substrates, products, and indeed to specific growth rate, and therefore a direct reflection of metabolic rate. Heat flow rate measured by conduction calorimetry has a technical advantage over estimates for many material flows which require assays at a minimum of two discrete times to give the rate. In order to make heat flow rate specific to the amount of the living cellular system, it would be advantageous to divide it by viable biomass. This requirement has been fulfilled by combining a continuous flow microcalorimeter ex situ with a dielectric spectroscope in situ, the latter measuring the viable cell mass volume fraction. The quality of the resulting biosensor for specific heat flow rate was illustrated using batch cultures of Chinese hamster ovary cells (CHO 320) producing recombinant human interferon-γ (IFN-γ) during growth in a stirred tank bioreactor under fully aerobic conditions. The measuring scatter of the probe was decreased significantly by applying the moving average technique to the two participant signals. It was demonstrated that the total metabolic rate of the cells, as indicated by the specific heat flow rate sensor, decreased with increasing time in batch culture, coincident with the decline in the two major substrates, glucose and glutamine, and the accumulation of the by-products, ammonia and lactate. Furthermore, the specific heat flow rate was an earlier indicator of substrate depletion than the flow rate alone. The calorimetric-respirometric ratio showed the intensive participation of anaerobic processes during growth and the related IFN-γ production. Specific heat flow rate was monotonically related to specific cell growth rate and associated with specific IFN-γ production. Specific heat flow rate is potentially a valid control variable for the growth of genetically engineered cell lines producing target proteins. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58: 464–477, 1998." @default.
- W1967413900 created "2016-06-24" @default.
- W1967413900 creator A5008986667 @default.
- W1967413900 creator A5012616491 @default.
- W1967413900 creator A5049034599 @default.
- W1967413900 date "1998-06-05" @default.
- W1967413900 modified "2023-10-10" @default.
- W1967413900 title "Specific heat flow rate: An on-line monitor and potential control variable of specific metabolic rate in animal cell culture that combines microcalorimetry with dielectric spectroscopy" @default.
- W1967413900 cites W138314035 @default.
- W1967413900 cites W1480609963 @default.
- W1967413900 cites W1483212110 @default.
- W1967413900 cites W1542888215 @default.
- W1967413900 cites W1971073076 @default.
- W1967413900 cites W1979068443 @default.
- W1967413900 cites W1983848089 @default.
- W1967413900 cites W1992495847 @default.
- W1967413900 cites W1999367645 @default.
- W1967413900 cites W2010716389 @default.
- W1967413900 cites W2011809613 @default.
- W1967413900 cites W2030434933 @default.
- W1967413900 cites W2033241810 @default.
- W1967413900 cites W2033497129 @default.
- W1967413900 cites W2039280798 @default.
- W1967413900 cites W2039564294 @default.
- W1967413900 cites W2042103039 @default.
- W1967413900 cites W2051954404 @default.
- W1967413900 cites W2053940626 @default.
- W1967413900 cites W2055219644 @default.
- W1967413900 cites W2075652799 @default.
- W1967413900 cites W2084094255 @default.
- W1967413900 cites W2086305989 @default.
- W1967413900 cites W2086934717 @default.
- W1967413900 cites W2088073724 @default.
- W1967413900 cites W2091317337 @default.
- W1967413900 cites W2094106953 @default.
- W1967413900 cites W2094421015 @default.
- W1967413900 cites W2112699276 @default.
- W1967413900 cites W2124074094 @default.
- W1967413900 cites W2124181565 @default.
- W1967413900 cites W2125857578 @default.
- W1967413900 cites W2139132159 @default.
- W1967413900 cites W2155927328 @default.
- W1967413900 cites W2158551848 @default.
- W1967413900 cites W2161263785 @default.
- W1967413900 cites W2165724294 @default.
- W1967413900 cites W2167374264 @default.
- W1967413900 cites W2171314882 @default.
- W1967413900 cites W2213276966 @default.
- W1967413900 cites W2493251353 @default.
- W1967413900 cites W2897292266 @default.
- W1967413900 cites W3093926414 @default.
- W1967413900 cites W4233287545 @default.
- W1967413900 cites W4249398826 @default.
- W1967413900 cites W4300693716 @default.
- W1967413900 cites W4864661 @default.
- W1967413900 doi "https://doi.org/10.1002/(sici)1097-0290(19980605)58:5<464::aid-bit2>3.0.co;2-b" @default.
- W1967413900 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10099282" @default.
- W1967413900 hasPublicationYear "1998" @default.
- W1967413900 type Work @default.
- W1967413900 sameAs 1967413900 @default.
- W1967413900 citedByCount "62" @default.
- W1967413900 countsByYear W19674139002012 @default.
- W1967413900 countsByYear W19674139002013 @default.
- W1967413900 countsByYear W19674139002014 @default.
- W1967413900 countsByYear W19674139002015 @default.
- W1967413900 countsByYear W19674139002016 @default.
- W1967413900 countsByYear W19674139002022 @default.
- W1967413900 crossrefType "journal-article" @default.
- W1967413900 hasAuthorship W1967413900A5008986667 @default.
- W1967413900 hasAuthorship W1967413900A5012616491 @default.
- W1967413900 hasAuthorship W1967413900A5049034599 @default.
- W1967413900 hasConcept C113196181 @default.
- W1967413900 hasConcept C121332964 @default.
- W1967413900 hasConcept C160756335 @default.
- W1967413900 hasConcept C168170006 @default.
- W1967413900 hasConcept C172120300 @default.
- W1967413900 hasConcept C175656101 @default.
- W1967413900 hasConcept C178790620 @default.
- W1967413900 hasConcept C185592680 @default.
- W1967413900 hasConcept C186060115 @default.
- W1967413900 hasConcept C202270520 @default.
- W1967413900 hasConcept C2524010 @default.
- W1967413900 hasConcept C2778312390 @default.
- W1967413900 hasConcept C3288061 @default.
- W1967413900 hasConcept C33923547 @default.
- W1967413900 hasConcept C43617362 @default.
- W1967413900 hasConcept C45902088 @default.
- W1967413900 hasConcept C54355233 @default.
- W1967413900 hasConcept C55493867 @default.
- W1967413900 hasConcept C81885089 @default.
- W1967413900 hasConcept C86803240 @default.
- W1967413900 hasConcept C97355855 @default.
- W1967413900 hasConceptScore W1967413900C113196181 @default.
- W1967413900 hasConceptScore W1967413900C121332964 @default.
- W1967413900 hasConceptScore W1967413900C160756335 @default.
- W1967413900 hasConceptScore W1967413900C168170006 @default.
- W1967413900 hasConceptScore W1967413900C172120300 @default.
- W1967413900 hasConceptScore W1967413900C175656101 @default.