Matches in SemOpenAlex for { <https://semopenalex.org/work/W1967546119> ?p ?o ?g. }
- W1967546119 endingPage "6170" @default.
- W1967546119 startingPage "6150" @default.
- W1967546119 abstract "A comprehensive first principles theoretical investigation of the gas phase reaction Ca+HF→CaF+H is reported. The overall study involves three distinct elements: (a) generation of an accurate ab initio potential energy surface for the ground electronic state of the Ca–F–H system, (b) careful fitting of the computed surface to an analytical form suitable for three-dimensional reactive scattering calculations, and (c) execution of classical trajectory calculations for Ca+HF collisions using the fitted potential surface. Ab initio potential energy calculations were performed for 175 Ca–F–H geometries using an MCSCF-CI method with a large Gaussian orbital basis set. The error in the computed endothermicity for the reaction of Ca and HF is less than 1 kcal/mol and the errors in the computed saddle point energies are believed to be less than 3 kcal/mol. The potential energy surface is dominated by a deep well corresponding to a stable linear H–Ca–F intermediate with an extremely small bending force constant. The calculations clearly demonstrate that the preferred geometry for Ca attack on HF is markedly noncollinear. The saddle point for both fluorine exchange reaction and insertion into the H–Ca–F well occurs for a Ca–F–H angle of 75° and has an energy of 16.1 kcal/mol relative to Ca+HF. The energy barrier for collinear reaction, 30.0 kcal/mol, is nearly twice as high. The analytical representation of the ab initio potential energy surface is based on a polynomial expansion in the three diatomic bond lengths that reproduces the values of the computed energies to within a root mean square deviation of 1.2 kcal/mol and reduces to the appropriate diatomic potentials in the asymptotic limits. Classical trajectory calculations for Ca+HF(v=1) utilizing the fitted surface establish the fact that the H–Ca–F potential well dominates the collision dynamics thus qualifying Ca+HF as a bona fide example of a chemical insertion reaction. Because of the extensive sampling of the H–Ca–F well, many trajectories formed rather long-lived intermediate complexes before reaching diatomic end products. A significant number of these trajectories were not converged with respect to changes in the integration time step. Despite uncertainties associated with the ultimate fates of the nonconverged trajectories, the results obtained support a number of generalizations relating to microscopic features of Ca+HF collisions. Among these are: (1) at fixed total collision energy, excitation of HF to v=1 is much more effective in promoting reaction than is placing the corresponding amount of energy in Ca,HF translation, (2) at fixed initial translational energy, reaction cross sections increase with increasing HF rotational quantum number J, (3) for trajectories which enter the H–Ca–F well, escape to form products is favored by increasing initial HF rotation and escape back to reactants is favored by increasing the initial relative translational energy, and (4) the CaF fractional product energy disposals are remarkably independent of initial collision conditions. These conclusions are compatible with the observation that significant intermode vibrational energy transfer does not occur in the H–Ca–F intermediate on the collision time scale (1–2 ps)." @default.
- W1967546119 created "2016-06-24" @default.
- W1967546119 creator A5007722908 @default.
- W1967546119 creator A5021528112 @default.
- W1967546119 creator A5024513735 @default.
- W1967546119 creator A5047858595 @default.
- W1967546119 date "1987-06-01" @default.
- W1967546119 modified "2023-09-26" @default.
- W1967546119 title "Ca+HF: The anatomy of a chemical insertion reaction" @default.
- W1967546119 cites W1963770207 @default.
- W1967546119 cites W1965769887 @default.
- W1967546119 cites W1966729350 @default.
- W1967546119 cites W1970425525 @default.
- W1967546119 cites W1970888899 @default.
- W1967546119 cites W1973620244 @default.
- W1967546119 cites W1974142076 @default.
- W1967546119 cites W1978372731 @default.
- W1967546119 cites W1982151693 @default.
- W1967546119 cites W1982842206 @default.
- W1967546119 cites W1984130074 @default.
- W1967546119 cites W1987025945 @default.
- W1967546119 cites W1992911463 @default.
- W1967546119 cites W1999271976 @default.
- W1967546119 cites W2003750902 @default.
- W1967546119 cites W2003870098 @default.
- W1967546119 cites W2026977526 @default.
- W1967546119 cites W2028934418 @default.
- W1967546119 cites W2033789484 @default.
- W1967546119 cites W2033951523 @default.
- W1967546119 cites W2035780524 @default.
- W1967546119 cites W2037528306 @default.
- W1967546119 cites W2041612403 @default.
- W1967546119 cites W2050151523 @default.
- W1967546119 cites W2050453167 @default.
- W1967546119 cites W2050637179 @default.
- W1967546119 cites W2052877846 @default.
- W1967546119 cites W2055190760 @default.
- W1967546119 cites W2057095608 @default.
- W1967546119 cites W2063797387 @default.
- W1967546119 cites W2068995207 @default.
- W1967546119 cites W2075010448 @default.
- W1967546119 cites W2075539034 @default.
- W1967546119 cites W2078032057 @default.
- W1967546119 cites W2081344940 @default.
- W1967546119 cites W2086007736 @default.
- W1967546119 cites W2089336107 @default.
- W1967546119 cites W2090633376 @default.
- W1967546119 cites W2256514849 @default.
- W1967546119 cites W2318763426 @default.
- W1967546119 cites W2337226967 @default.
- W1967546119 cites W4231247751 @default.
- W1967546119 cites W4236040078 @default.
- W1967546119 cites W4252598364 @default.
- W1967546119 doi "https://doi.org/10.1063/1.452454" @default.
- W1967546119 hasPublicationYear "1987" @default.
- W1967546119 type Work @default.
- W1967546119 sameAs 1967546119 @default.
- W1967546119 citedByCount "42" @default.
- W1967546119 countsByYear W19675461192015 @default.
- W1967546119 countsByYear W19675461192016 @default.
- W1967546119 countsByYear W19675461192017 @default.
- W1967546119 countsByYear W19675461192023 @default.
- W1967546119 crossrefType "journal-article" @default.
- W1967546119 hasAuthorship W1967546119A5007722908 @default.
- W1967546119 hasAuthorship W1967546119A5021528112 @default.
- W1967546119 hasAuthorship W1967546119A5024513735 @default.
- W1967546119 hasAuthorship W1967546119A5047858595 @default.
- W1967546119 hasConcept C111806078 @default.
- W1967546119 hasConcept C121332964 @default.
- W1967546119 hasConcept C125277925 @default.
- W1967546119 hasConcept C147597530 @default.
- W1967546119 hasConcept C178790620 @default.
- W1967546119 hasConcept C183971685 @default.
- W1967546119 hasConcept C184779094 @default.
- W1967546119 hasConcept C185592680 @default.
- W1967546119 hasConcept C2524010 @default.
- W1967546119 hasConcept C2681867 @default.
- W1967546119 hasConcept C2781442258 @default.
- W1967546119 hasConcept C32909587 @default.
- W1967546119 hasConcept C33923547 @default.
- W1967546119 hasConcept C41999313 @default.
- W1967546119 hasConcept C69523127 @default.
- W1967546119 hasConcept C84551667 @default.
- W1967546119 hasConceptScore W1967546119C111806078 @default.
- W1967546119 hasConceptScore W1967546119C121332964 @default.
- W1967546119 hasConceptScore W1967546119C125277925 @default.
- W1967546119 hasConceptScore W1967546119C147597530 @default.
- W1967546119 hasConceptScore W1967546119C178790620 @default.
- W1967546119 hasConceptScore W1967546119C183971685 @default.
- W1967546119 hasConceptScore W1967546119C184779094 @default.
- W1967546119 hasConceptScore W1967546119C185592680 @default.
- W1967546119 hasConceptScore W1967546119C2524010 @default.
- W1967546119 hasConceptScore W1967546119C2681867 @default.
- W1967546119 hasConceptScore W1967546119C2781442258 @default.
- W1967546119 hasConceptScore W1967546119C32909587 @default.
- W1967546119 hasConceptScore W1967546119C33923547 @default.
- W1967546119 hasConceptScore W1967546119C41999313 @default.
- W1967546119 hasConceptScore W1967546119C69523127 @default.