Matches in SemOpenAlex for { <https://semopenalex.org/work/W196756105> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W196756105 startingPage "37" @default.
- W196756105 abstract "Many of your students probably take pictures daily. Whether snapshots of their friends at a Justin Bieber concert or of their latest skateboard trick, these images document changes in a student's life. cameras can do more, however, than record memories to post on Facebook. They can also help students examine changes in their environment. This article shows how to use a digital camera as a visualization tool to monitor plant phenology over the course of a year. Phenology, or the study of periodic natural events, is a growing body of science that is important to understanding our changing climate. By visually analyzing changes in nature, students can learn about their environment and provide scientists with valuable data to aid in global climate change research. The activities described here align with several of the Scientific and Engineering Practices of A Framework for K-12 Science Education (NRC 2012), as students plan and carry out their own investigations, analyze and interpret data, use mathematics and computational thinking, and construct evidence-based explanations. Such widespread technology as digital photography has been recommended for use in science classrooms for nearly two decades [Benchmarks for Science Literacy (AAAS 1993, pp. 47-48, 56-57) and the National Science Education Standards (NSES) (NRC 1996, pp. 190-192)]. A 2004 article in this journal noted, Digital cameras open up enormous possibilities in the science classroom, especially when used as data collectors (Leonard et al. 2004, p. 34). Nowadays, digital photography is ubiquitous; even many cell phones have a built-in high-quality digital camera; accordingly, we should show students how their cameras and smart phones can become tools of scientific measurement. Phenology, the study of our planet's clock Spring 2012 was the warmest of recent record. This meant earlier flowering dates for many plant species across the country, but why should we care? Tracking the chronology of periodic phases of plant development can provide data that helps test such hypotheses as: (1) Across the Northern Hemisphere, spring is arriving earlier at a pace of approximately 1.2 days per decade (Haggerty and Mazer 2008), or (2) An increase in the mean annual air temperature by 1 degree Celsius leads to an extension of the growing season by 5days (Chmielewski and Rozer 2001). Phenologyis one of the most prominent bioindicators of biological systems affected by climate change. Significant correlations exist between winter and spring temperatures and spring phenological phases, such as bud burst, leaf unfolding or flowering in mid and higher latitudes (Estrella and Menzel 2006; Soudani et al. 2008). Similarly, leaf senescence (brown-down) and leaf drop in the fall can relate closely to both temperature and water availability. Such bio-indicators can suggest that our planet's nutrient cycling processes are changing and that farmers and gardeners will have to adjust the timing of planting or harvesting their crops, that migrating insects will have to adjust to new peak pollination times, that students' backyards could provide habitat for plants that require a longer growing season, or that the annual family vacation to see fall colors will have to be postponed. For now, predicting the annual timing of fall leaf coloring and spring green-up remains challenging for scientists due to a lack of ground observations (Delpierre et al. 2008). Recording such phenological changes could have greater implications as well, such as helping to predict how shifts in agricultural production might impact the global food supply. Your students can collect and provide data to aid the scientific community in this challenge. As a plant canopy begins to green-up in the spring and change color in the fall, students will notice a steady change in the relative percentage of red and green in the canopies' leaves (Figures 1 and 2). …" @default.
- W196756105 created "2016-06-24" @default.
- W196756105 creator A5015375978 @default.
- W196756105 creator A5030975891 @default.
- W196756105 creator A5054502363 @default.
- W196756105 creator A5057948380 @default.
- W196756105 creator A5062330442 @default.
- W196756105 creator A5067362495 @default.
- W196756105 creator A5085885974 @default.
- W196756105 date "2013-01-01" @default.
- W196756105 modified "2023-09-26" @default.
- W196756105 title "Keeping a (Digital) Eye on Nature's Clock: Students Use Digital Cameras to Monitor Plant Phenology" @default.
- W196756105 hasPublicationYear "2013" @default.
- W196756105 type Work @default.
- W196756105 sameAs 196756105 @default.
- W196756105 citedByCount "1" @default.
- W196756105 countsByYear W1967561052015 @default.
- W196756105 crossrefType "journal-article" @default.
- W196756105 hasAuthorship W196756105A5015375978 @default.
- W196756105 hasAuthorship W196756105A5030975891 @default.
- W196756105 hasAuthorship W196756105A5054502363 @default.
- W196756105 hasAuthorship W196756105A5057948380 @default.
- W196756105 hasAuthorship W196756105A5062330442 @default.
- W196756105 hasAuthorship W196756105A5067362495 @default.
- W196756105 hasAuthorship W196756105A5085885974 @default.
- W196756105 hasConcept C119657128 @default.
- W196756105 hasConcept C142362112 @default.
- W196756105 hasConcept C145420912 @default.
- W196756105 hasConcept C153349607 @default.
- W196756105 hasConcept C154945302 @default.
- W196756105 hasConcept C15744967 @default.
- W196756105 hasConcept C197352329 @default.
- W196756105 hasConcept C199360897 @default.
- W196756105 hasConcept C2522767166 @default.
- W196756105 hasConcept C2778658864 @default.
- W196756105 hasConcept C2780801425 @default.
- W196756105 hasConcept C2992906163 @default.
- W196756105 hasConcept C36464697 @default.
- W196756105 hasConcept C41008148 @default.
- W196756105 hasConcept C44877443 @default.
- W196756105 hasConcept C49774154 @default.
- W196756105 hasConcept C59822182 @default.
- W196756105 hasConcept C77379859 @default.
- W196756105 hasConcept C86803240 @default.
- W196756105 hasConceptScore W196756105C119657128 @default.
- W196756105 hasConceptScore W196756105C142362112 @default.
- W196756105 hasConceptScore W196756105C145420912 @default.
- W196756105 hasConceptScore W196756105C153349607 @default.
- W196756105 hasConceptScore W196756105C154945302 @default.
- W196756105 hasConceptScore W196756105C15744967 @default.
- W196756105 hasConceptScore W196756105C197352329 @default.
- W196756105 hasConceptScore W196756105C199360897 @default.
- W196756105 hasConceptScore W196756105C2522767166 @default.
- W196756105 hasConceptScore W196756105C2778658864 @default.
- W196756105 hasConceptScore W196756105C2780801425 @default.
- W196756105 hasConceptScore W196756105C2992906163 @default.
- W196756105 hasConceptScore W196756105C36464697 @default.
- W196756105 hasConceptScore W196756105C41008148 @default.
- W196756105 hasConceptScore W196756105C44877443 @default.
- W196756105 hasConceptScore W196756105C49774154 @default.
- W196756105 hasConceptScore W196756105C59822182 @default.
- W196756105 hasConceptScore W196756105C77379859 @default.
- W196756105 hasConceptScore W196756105C86803240 @default.
- W196756105 hasIssue "1" @default.
- W196756105 hasLocation W1967561051 @default.
- W196756105 hasOpenAccess W196756105 @default.
- W196756105 hasPrimaryLocation W1967561051 @default.
- W196756105 hasRelatedWork W1504580186 @default.
- W196756105 hasRelatedWork W2008427781 @default.
- W196756105 hasRelatedWork W2100137827 @default.
- W196756105 hasRelatedWork W2110591377 @default.
- W196756105 hasRelatedWork W2176686922 @default.
- W196756105 hasRelatedWork W277170432 @default.
- W196756105 hasVolume "80" @default.
- W196756105 isParatext "false" @default.
- W196756105 isRetracted "false" @default.
- W196756105 magId "196756105" @default.
- W196756105 workType "article" @default.