Matches in SemOpenAlex for { <https://semopenalex.org/work/W1967570061> ?p ?o ?g. }
- W1967570061 endingPage "40" @default.
- W1967570061 startingPage "20" @default.
- W1967570061 abstract "Abstract The Abu Ruweis Formation, NW Jordan, was studied with regard to its chemical (major, minor elements, REE, S-, O-, C isotopes, organic chemistry), mineralogical compositions (rock-forming minerals), coal petrography (maceral analyses) and palynology (age determination and palaecosystem) for the evaporite–coal facies transition which is very rarely found. The palynomorphs point to a Late Triassic/Carnian age of formation. Strong evaporation in the series is demonstrated by the presence of dolomite, gypsum and celestite. Mg, Ca, F, Cl, S, Sr and Ba reflect the variation of evaporation during basin subsidence. A detrital influx is characterized by the abundance of Si, Ti, Al, Fe, Mn Ce, Co, Cr, V, Y and the (Zr + Rb)/Sr ratio. Salinity variation may be characterized by the fractionation of LREE (La) and HREE (Lu). The element triplet Zn, Cu and Pb offers a clue to the redox regime and supports the idea of mineralogical-based proximity indicators: Zn (Eh ≪ 0) ⇒ Cu (Eh ≤ 0) ⇒ Pb (Eh ≤ 0). Oxygen isotope composition ( δ 18 O − 8.3 to − 0.9‰) of the carbonate fraction resulted in uniform isotope formation temperatures near 50 °C. Temperature data obtained during coal petrography yielded maximum paleotemperatures of 100 °C for the black shale and about 70 °C for the remaining coal samples that are likely to reflect hot brine activity in some parts of the basin. The carbon isotopic composition ( δ 13 C − 12.4 to − 3.9‰) of the carbonate fractions indicates a biogenic 12 C-enriched CO 2 source, which probably was admixed to marine pore water bicarbonate (with δ 13 C near 0‰) during early diagenesis. The S isotope composition (sulfide fraction − 28.9 to − 24.0‰) is typical of sulfides formed in the course of bacterial reduction with some sulfate (sulfate fraction + 7.5 to + 11.6‰) resulted from later re-oxidation of the sulfides. Phosphate distribution is a measure for the aridity while high-sulfur contents in the coal-bearing sediments point to brackish or alkaline waters. The results of the organic chemistry are interpreted in terms of a bloom of algae which were preserved during dysaerobic conditions in the course of early diagenesis. Sesqui- and diterpenoids are most probably derived from precursor molecules abundant in leaf resins of conifers. Phenanthrene and its methylated analogues derived from combustion products of fossil fuels generated by wild fires. Among the maceral types, textinites A and B represent xylem features of tree trunks and the crassi-cutinite upper leaf cuticles. The data allow for a definition of a special geological setting called the “Arabian Keuper Facies”. This facies type is characterized by an evaporite–coal transition which translates into a geodynamic setting positioned between the fully marine “Alpine Triassic Facies” of the Tethyan Ocean where submarine brines were responsible for the Alpine-type MVT Pb–Zn deposits and the epicontinental “Germanic Keuper Facies” that lacks both hydrothermal activity and major marine incursions." @default.
- W1967570061 created "2016-06-24" @default.
- W1967570061 creator A5006886494 @default.
- W1967570061 creator A5014655086 @default.
- W1967570061 creator A5027991027 @default.
- W1967570061 creator A5040127049 @default.
- W1967570061 creator A5052584068 @default.
- W1967570061 creator A5055996761 @default.
- W1967570061 creator A5072765059 @default.
- W1967570061 date "2012-03-01" @default.
- W1967570061 modified "2023-09-30" @default.
- W1967570061 title "The evaporite–coal transition: Chemical, mineralogical and organic composition of the Late Triassic Abu Ruweis Formation, NW Jordan—Reference type of the “Arabian Keuper”" @default.
- W1967570061 cites W112581710 @default.
- W1967570061 cites W1970165205 @default.
- W1967570061 cites W1970658925 @default.
- W1967570061 cites W1971566370 @default.
- W1967570061 cites W1982249221 @default.
- W1967570061 cites W1984455569 @default.
- W1967570061 cites W1986323665 @default.
- W1967570061 cites W1989778622 @default.
- W1967570061 cites W1991081963 @default.
- W1967570061 cites W1993130268 @default.
- W1967570061 cites W1994845902 @default.
- W1967570061 cites W1995336154 @default.
- W1967570061 cites W1995575035 @default.
- W1967570061 cites W1997338331 @default.
- W1967570061 cites W2005726506 @default.
- W1967570061 cites W2007635196 @default.
- W1967570061 cites W2008281306 @default.
- W1967570061 cites W2008458761 @default.
- W1967570061 cites W2015343721 @default.
- W1967570061 cites W2015876559 @default.
- W1967570061 cites W2017633530 @default.
- W1967570061 cites W2023494841 @default.
- W1967570061 cites W2024201962 @default.
- W1967570061 cites W2025977109 @default.
- W1967570061 cites W2034047225 @default.
- W1967570061 cites W2039753816 @default.
- W1967570061 cites W2042336747 @default.
- W1967570061 cites W2042637615 @default.
- W1967570061 cites W2050716036 @default.
- W1967570061 cites W2053874351 @default.
- W1967570061 cites W2054232441 @default.
- W1967570061 cites W2066980677 @default.
- W1967570061 cites W2071685372 @default.
- W1967570061 cites W2083240013 @default.
- W1967570061 cites W2090186775 @default.
- W1967570061 cites W2091102796 @default.
- W1967570061 cites W2092651219 @default.
- W1967570061 cites W2136936714 @default.
- W1967570061 cites W2159876209 @default.
- W1967570061 cites W2899408001 @default.
- W1967570061 cites W3126017275 @default.
- W1967570061 cites W4211110706 @default.
- W1967570061 cites W4235958148 @default.
- W1967570061 cites W4253952146 @default.
- W1967570061 cites W64953067 @default.
- W1967570061 doi "https://doi.org/10.1016/j.chemgeo.2011.12.028" @default.
- W1967570061 hasPublicationYear "2012" @default.
- W1967570061 type Work @default.
- W1967570061 sameAs 1967570061 @default.
- W1967570061 citedByCount "5" @default.
- W1967570061 countsByYear W19675700612014 @default.
- W1967570061 countsByYear W19675700612016 @default.
- W1967570061 countsByYear W19675700612017 @default.
- W1967570061 countsByYear W19675700612020 @default.
- W1967570061 crossrefType "journal-article" @default.
- W1967570061 hasAuthorship W1967570061A5006886494 @default.
- W1967570061 hasAuthorship W1967570061A5014655086 @default.
- W1967570061 hasAuthorship W1967570061A5027991027 @default.
- W1967570061 hasAuthorship W1967570061A5040127049 @default.
- W1967570061 hasAuthorship W1967570061A5052584068 @default.
- W1967570061 hasAuthorship W1967570061A5055996761 @default.
- W1967570061 hasAuthorship W1967570061A5072765059 @default.
- W1967570061 hasConcept C127313418 @default.
- W1967570061 hasConcept C151730666 @default.
- W1967570061 hasConcept C166957645 @default.
- W1967570061 hasConcept C17409809 @default.
- W1967570061 hasConcept C34221334 @default.
- W1967570061 hasConcept C518851703 @default.
- W1967570061 hasConcept C6494504 @default.
- W1967570061 hasConcept C95457728 @default.
- W1967570061 hasConceptScore W1967570061C127313418 @default.
- W1967570061 hasConceptScore W1967570061C151730666 @default.
- W1967570061 hasConceptScore W1967570061C166957645 @default.
- W1967570061 hasConceptScore W1967570061C17409809 @default.
- W1967570061 hasConceptScore W1967570061C34221334 @default.
- W1967570061 hasConceptScore W1967570061C518851703 @default.
- W1967570061 hasConceptScore W1967570061C6494504 @default.
- W1967570061 hasConceptScore W1967570061C95457728 @default.
- W1967570061 hasLocation W19675700611 @default.
- W1967570061 hasOpenAccess W1967570061 @default.
- W1967570061 hasPrimaryLocation W19675700611 @default.
- W1967570061 hasRelatedWork W1973831813 @default.
- W1967570061 hasRelatedWork W1991450372 @default.
- W1967570061 hasRelatedWork W2011662120 @default.
- W1967570061 hasRelatedWork W2092011645 @default.
- W1967570061 hasRelatedWork W2099947365 @default.