Matches in SemOpenAlex for { <https://semopenalex.org/work/W1967583274> ?p ?o ?g. }
- W1967583274 endingPage "1990" @default.
- W1967583274 startingPage "1978" @default.
- W1967583274 abstract "The method of correlated basis functions offers a promising new approach to Hamiltonian formulations of lattice gauge problems. In this contribution, ideas and techniques that have been successful in the variational theory of homogeneous and inhomogeneous boson quantum fluids are adapted and applied to the two-dimensional U(1) lattice gauge problem in the uncharged sector. The vacuum ground state is described by a variational trial function of Jastrow type, including single-plaquette and plaquette-pair factors. Euler-Lagrange equations for the optimization of this trial function are constructed and solved, in analogy with the paired-phonon analysis of quantum-fluid theory, to obtain results for the one-plaquette density and the plaquette-pair distribution function describing electromagnetic-field correlations. An associated set of optimized elementary excitations of Bijl-Feynman type emerges from the analysis. Combining the Feynman eigenvalue equation for the elementary excitations with the paired-lattice-photon equation, a numerically useful necessary condition is derived for stability of the trial vacuum ground state with respect to the optimized excitations. Numerical calculations are carried out with the aid of hypernetted-chain techniques analogous to those commonly applied for quantum fluids. Results for the vacuum ground-state energy, the pair distribution function and static structure function, the glueball mass, and the particle-hole potential are presented for a range of the coupling parameter $ensuremath{lambda}$ running from the strong- to the weak-coupling regime. These results are compared with previous analytical predictions and with data from numerical simulations. The local stability condition is found to be met for all $ensuremath{lambda}$, reaffirming the prediction that for $ensuremath{lambda}<ensuremath{infty}$ the glueball mass remains finite and a confinement-deconfinement transition does not occur. It is concluded that the optimized variational approach, carried to the Jastrow level, yields a quantitatively useful first description whose accuracy may be increased by practicable implementation of correlated-basis perturbation theory. The approach may be extended to finite temperature and to the charged, string sector of the U(1) model, as well as to other lattice gauge problems." @default.
- W1967583274 created "2016-06-24" @default.
- W1967583274 creator A5055844065 @default.
- W1967583274 creator A5079161532 @default.
- W1967583274 creator A5079361224 @default.
- W1967583274 date "1991-03-15" @default.
- W1967583274 modified "2023-10-13" @default.
- W1967583274 title "Vacuum ground and excited states of the U(1) lattice gauge Hamiltonian" @default.
- W1967583274 cites W1576153461 @default.
- W1967583274 cites W1969675280 @default.
- W1967583274 cites W1970712783 @default.
- W1967583274 cites W1970947618 @default.
- W1967583274 cites W1973162335 @default.
- W1967583274 cites W1981258106 @default.
- W1967583274 cites W1983896865 @default.
- W1967583274 cites W1984782544 @default.
- W1967583274 cites W1986483986 @default.
- W1967583274 cites W1995727119 @default.
- W1967583274 cites W1995810707 @default.
- W1967583274 cites W2000724565 @default.
- W1967583274 cites W2003180713 @default.
- W1967583274 cites W2004929134 @default.
- W1967583274 cites W2006551527 @default.
- W1967583274 cites W2007714296 @default.
- W1967583274 cites W2019298118 @default.
- W1967583274 cites W2022870558 @default.
- W1967583274 cites W2022988221 @default.
- W1967583274 cites W2024178002 @default.
- W1967583274 cites W2025358209 @default.
- W1967583274 cites W2026363456 @default.
- W1967583274 cites W2033665508 @default.
- W1967583274 cites W2033829366 @default.
- W1967583274 cites W2036644620 @default.
- W1967583274 cites W2040363785 @default.
- W1967583274 cites W2043530454 @default.
- W1967583274 cites W2047529315 @default.
- W1967583274 cites W2047968614 @default.
- W1967583274 cites W2049888478 @default.
- W1967583274 cites W2053938334 @default.
- W1967583274 cites W2055495666 @default.
- W1967583274 cites W2056606943 @default.
- W1967583274 cites W2065320737 @default.
- W1967583274 cites W2065539594 @default.
- W1967583274 cites W2080632837 @default.
- W1967583274 cites W2084692775 @default.
- W1967583274 cites W2086634467 @default.
- W1967583274 cites W2088298451 @default.
- W1967583274 cites W2095562555 @default.
- W1967583274 cites W2136508287 @default.
- W1967583274 cites W2142736229 @default.
- W1967583274 cites W2144885756 @default.
- W1967583274 cites W2160049695 @default.
- W1967583274 cites W2169554039 @default.
- W1967583274 doi "https://doi.org/10.1103/physrevd.43.1978" @default.
- W1967583274 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10013576" @default.
- W1967583274 hasPublicationYear "1991" @default.
- W1967583274 type Work @default.
- W1967583274 sameAs 1967583274 @default.
- W1967583274 citedByCount "27" @default.
- W1967583274 countsByYear W19675832742013 @default.
- W1967583274 countsByYear W19675832742023 @default.
- W1967583274 crossrefType "journal-article" @default.
- W1967583274 hasAuthorship W1967583274A5055844065 @default.
- W1967583274 hasAuthorship W1967583274A5079161532 @default.
- W1967583274 hasAuthorship W1967583274A5079361224 @default.
- W1967583274 hasConcept C113603373 @default.
- W1967583274 hasConcept C121332964 @default.
- W1967583274 hasConcept C126255220 @default.
- W1967583274 hasConcept C130787639 @default.
- W1967583274 hasConcept C181830111 @default.
- W1967583274 hasConcept C24890656 @default.
- W1967583274 hasConcept C2781204021 @default.
- W1967583274 hasConcept C3079626 @default.
- W1967583274 hasConcept C33923547 @default.
- W1967583274 hasConcept C62520636 @default.
- W1967583274 hasConcept C65574998 @default.
- W1967583274 hasConcept C69523127 @default.
- W1967583274 hasConcept C79118098 @default.
- W1967583274 hasConceptScore W1967583274C113603373 @default.
- W1967583274 hasConceptScore W1967583274C121332964 @default.
- W1967583274 hasConceptScore W1967583274C126255220 @default.
- W1967583274 hasConceptScore W1967583274C130787639 @default.
- W1967583274 hasConceptScore W1967583274C181830111 @default.
- W1967583274 hasConceptScore W1967583274C24890656 @default.
- W1967583274 hasConceptScore W1967583274C2781204021 @default.
- W1967583274 hasConceptScore W1967583274C3079626 @default.
- W1967583274 hasConceptScore W1967583274C33923547 @default.
- W1967583274 hasConceptScore W1967583274C62520636 @default.
- W1967583274 hasConceptScore W1967583274C65574998 @default.
- W1967583274 hasConceptScore W1967583274C69523127 @default.
- W1967583274 hasConceptScore W1967583274C79118098 @default.
- W1967583274 hasIssue "6" @default.
- W1967583274 hasLocation W19675832741 @default.
- W1967583274 hasLocation W19675832742 @default.
- W1967583274 hasOpenAccess W1967583274 @default.
- W1967583274 hasPrimaryLocation W19675832741 @default.
- W1967583274 hasRelatedWork W1539887275 @default.
- W1967583274 hasRelatedWork W1968873898 @default.