Matches in SemOpenAlex for { <https://semopenalex.org/work/W1967689443> ?p ?o ?g. }
- W1967689443 endingPage "e46700" @default.
- W1967689443 startingPage "e46700" @default.
- W1967689443 abstract "Background Using hybrid approach for gene selection and classification is common as results obtained are generally better than performing the two tasks independently. Yet, for some microarray datasets, both classification accuracy and stability of gene sets obtained still have rooms for improvement. This may be due to the presence of samples with wrong class labels (i.e. outliers). Outlier detection algorithms proposed so far are either not suitable for microarray data, or only solve the outlier detection problem on their own. Results We tackle the outlier detection problem based on a previously proposed Multiple-Filter-Multiple-Wrapper (MFMW) model, which was demonstrated to yield promising results when compared to other hybrid approaches (Leung and Hung, 2010). To incorporate outlier detection and overcome limitations of the existing MFMW model, three new features are introduced in our proposed MFMW-outlier approach: 1) an unbiased external Leave-One-Out Cross-Validation framework is developed to replace internal cross-validation in the previous MFMW model; 2) wrongly labeled samples are identified within the MFMW-outlier model; and 3) a stable set of genes is selected using an L1-norm SVM that removes any redundant genes present. Six binary-class microarray datasets were tested. Comparing with outlier detection studies on the same datasets, MFMW-outlier could detect all the outliers found in the original paper (for which the data was provided for analysis), and the genes selected after outlier removal were proven to have biological relevance. We also compared MFMW-outlier with PRAPIV (Zhang et al., 2006) based on same synthetic datasets. MFMW-outlier gave better average precision and recall values on three different settings. Lastly, artificially flipped microarray datasets were created by removing our detected outliers and flipping some of the remaining samples' labels. Almost all the ‘wrong’ (artificially flipped) samples were detected, suggesting that MFMW-outlier was sufficiently powerful to detect outliers in high-dimensional microarray datasets." @default.
- W1967689443 created "2016-06-24" @default.
- W1967689443 creator A5011796695 @default.
- W1967689443 creator A5015866095 @default.
- W1967689443 creator A5085687413 @default.
- W1967689443 date "2012-10-17" @default.
- W1967689443 modified "2023-10-01" @default.
- W1967689443 title "An Integrated Approach for Identifying Wrongly Labelled Samples When Performing Classification in Microarray Data" @default.
- W1967689443 cites W1485545181 @default.
- W1967689443 cites W1532318361 @default.
- W1967689443 cites W1552339598 @default.
- W1967689443 cites W1564813661 @default.
- W1967689443 cites W1579363363 @default.
- W1967689443 cites W1844026020 @default.
- W1967689443 cites W186572744 @default.
- W1967689443 cites W1966701961 @default.
- W1967689443 cites W1967103142 @default.
- W1967689443 cites W1977161650 @default.
- W1967689443 cites W1988973871 @default.
- W1967689443 cites W1989651175 @default.
- W1967689443 cites W1997338054 @default.
- W1967689443 cites W1998120891 @default.
- W1967689443 cites W2017337590 @default.
- W1967689443 cites W2020143282 @default.
- W1967689443 cites W2026402481 @default.
- W1967689443 cites W2027760820 @default.
- W1967689443 cites W2043235003 @default.
- W1967689443 cites W2044127274 @default.
- W1967689443 cites W2047818504 @default.
- W1967689443 cites W2061122559 @default.
- W1967689443 cites W2064208261 @default.
- W1967689443 cites W2082541706 @default.
- W1967689443 cites W2085673082 @default.
- W1967689443 cites W2087684630 @default.
- W1967689443 cites W2091947792 @default.
- W1967689443 cites W2096049249 @default.
- W1967689443 cites W2097150876 @default.
- W1967689443 cites W2107598685 @default.
- W1967689443 cites W2107956883 @default.
- W1967689443 cites W2108728387 @default.
- W1967689443 cites W2109103446 @default.
- W1967689443 cites W2109363337 @default.
- W1967689443 cites W2113146062 @default.
- W1967689443 cites W2116079122 @default.
- W1967689443 cites W2119387367 @default.
- W1967689443 cites W2126815340 @default.
- W1967689443 cites W2129281431 @default.
- W1967689443 cites W2130656427 @default.
- W1967689443 cites W2130698119 @default.
- W1967689443 cites W2131315497 @default.
- W1967689443 cites W2152739666 @default.
- W1967689443 cites W2158137698 @default.
- W1967689443 cites W2159400887 @default.
- W1967689443 cites W2163808882 @default.
- W1967689443 cites W2167689714 @default.
- W1967689443 cites W2168561598 @default.
- W1967689443 cites W2168693035 @default.
- W1967689443 cites W2170645625 @default.
- W1967689443 cites W2789622006 @default.
- W1967689443 cites W2794813029 @default.
- W1967689443 cites W70900466 @default.
- W1967689443 cites W2147745703 @default.
- W1967689443 cites W2793593547 @default.
- W1967689443 doi "https://doi.org/10.1371/journal.pone.0046700" @default.
- W1967689443 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3474777" @default.
- W1967689443 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23082127" @default.
- W1967689443 hasPublicationYear "2012" @default.
- W1967689443 type Work @default.
- W1967689443 sameAs 1967689443 @default.
- W1967689443 citedByCount "7" @default.
- W1967689443 countsByYear W19676894432014 @default.
- W1967689443 countsByYear W19676894432015 @default.
- W1967689443 countsByYear W19676894432016 @default.
- W1967689443 countsByYear W19676894432017 @default.
- W1967689443 countsByYear W19676894432022 @default.
- W1967689443 crossrefType "journal-article" @default.
- W1967689443 hasAuthorship W1967689443A5011796695 @default.
- W1967689443 hasAuthorship W1967689443A5015866095 @default.
- W1967689443 hasAuthorship W1967689443A5085687413 @default.
- W1967689443 hasBestOaLocation W19676894431 @default.
- W1967689443 hasConcept C106131492 @default.
- W1967689443 hasConcept C12267149 @default.
- W1967689443 hasConcept C124101348 @default.
- W1967689443 hasConcept C153180895 @default.
- W1967689443 hasConcept C154945302 @default.
- W1967689443 hasConcept C31972630 @default.
- W1967689443 hasConcept C41008148 @default.
- W1967689443 hasConcept C739882 @default.
- W1967689443 hasConcept C79337645 @default.
- W1967689443 hasConceptScore W1967689443C106131492 @default.
- W1967689443 hasConceptScore W1967689443C12267149 @default.
- W1967689443 hasConceptScore W1967689443C124101348 @default.
- W1967689443 hasConceptScore W1967689443C153180895 @default.
- W1967689443 hasConceptScore W1967689443C154945302 @default.
- W1967689443 hasConceptScore W1967689443C31972630 @default.
- W1967689443 hasConceptScore W1967689443C41008148 @default.
- W1967689443 hasConceptScore W1967689443C739882 @default.
- W1967689443 hasConceptScore W1967689443C79337645 @default.