Matches in SemOpenAlex for { <https://semopenalex.org/work/W1967701561> ?p ?o ?g. }
- W1967701561 endingPage "3443" @default.
- W1967701561 startingPage "3427" @default.
- W1967701561 abstract "An understanding of the distribution and extent of marine habitats is essential for the implementation of ecosystem-based management strategies. Historically this had been difficult in marine environments until the advancement of acoustic sensors. This study demonstrates the applicability of supervised learning techniques for benthic habitat characterization using angular backscatter response data. With the advancement of multibeam echo-sounder (MBES) technology, full coverage datasets of physical structure over vast regions of the seafloor are now achievable. Supervised learning methods typically applied to terrestrial remote sensing provide a cost-effective approach for habitat characterization in marine systems. However the comparison of the relative performance of different classifiers using acoustic data is limited. Characterization of acoustic backscatter data from MBES using four different supervised learning methods to generate benthic habitat maps is presented. Maximum Likelihood Classifier (MLC), Quick, Unbiased, Efficient Statistical Tree (QUEST), Random Forest (RF) and Support Vector Machine (SVM) were evaluated to classify angular backscatter response into habitat classes using training data acquired from underwater video observations. Results for biota classifications indicated that SVM and RF produced the highest accuracies, followed by QUEST and MLC, respectively. The most important backscatter data were from the moderate incidence angles between 30° and 50°. This study presents initial results for understanding how acoustic backscatter from MBES can be optimized for the characterization of marine benthic biological habitats." @default.
- W1967701561 created "2016-06-24" @default.
- W1967701561 creator A5008937983 @default.
- W1967701561 creator A5065819825 @default.
- W1967701561 creator A5075734722 @default.
- W1967701561 date "2012-11-12" @default.
- W1967701561 modified "2023-10-16" @default.
- W1967701561 title "Evaluation of Four Supervised Learning Methods for Benthic Habitat Mapping Using Backscatter from Multi-Beam Sonar" @default.
- W1967701561 cites W154607504 @default.
- W1967701561 cites W1964046456 @default.
- W1967701561 cites W1977609042 @default.
- W1967701561 cites W1984707318 @default.
- W1967701561 cites W1990808240 @default.
- W1967701561 cites W1997443969 @default.
- W1967701561 cites W2006641393 @default.
- W1967701561 cites W2030912020 @default.
- W1967701561 cites W2031895548 @default.
- W1967701561 cites W2033882318 @default.
- W1967701561 cites W2034395967 @default.
- W1967701561 cites W2035549557 @default.
- W1967701561 cites W2038432816 @default.
- W1967701561 cites W2053154970 @default.
- W1967701561 cites W2058918354 @default.
- W1967701561 cites W2063907334 @default.
- W1967701561 cites W2068072126 @default.
- W1967701561 cites W2069406300 @default.
- W1967701561 cites W2076656703 @default.
- W1967701561 cites W2110188672 @default.
- W1967701561 cites W2133469759 @default.
- W1967701561 cites W2138245312 @default.
- W1967701561 cites W2138973222 @default.
- W1967701561 cites W2139086914 @default.
- W1967701561 cites W2139567005 @default.
- W1967701561 cites W2146447144 @default.
- W1967701561 cites W2149298154 @default.
- W1967701561 cites W2161786948 @default.
- W1967701561 cites W2171436937 @default.
- W1967701561 cites W2911964244 @default.
- W1967701561 cites W2136573337 @default.
- W1967701561 doi "https://doi.org/10.3390/rs4113427" @default.
- W1967701561 hasPublicationYear "2012" @default.
- W1967701561 type Work @default.
- W1967701561 sameAs 1967701561 @default.
- W1967701561 citedByCount "84" @default.
- W1967701561 countsByYear W19677015612013 @default.
- W1967701561 countsByYear W19677015612014 @default.
- W1967701561 countsByYear W19677015612015 @default.
- W1967701561 countsByYear W19677015612016 @default.
- W1967701561 countsByYear W19677015612017 @default.
- W1967701561 countsByYear W19677015612018 @default.
- W1967701561 countsByYear W19677015612019 @default.
- W1967701561 countsByYear W19677015612020 @default.
- W1967701561 countsByYear W19677015612021 @default.
- W1967701561 countsByYear W19677015612022 @default.
- W1967701561 countsByYear W19677015612023 @default.
- W1967701561 crossrefType "journal-article" @default.
- W1967701561 hasAuthorship W1967701561A5008937983 @default.
- W1967701561 hasAuthorship W1967701561A5065819825 @default.
- W1967701561 hasAuthorship W1967701561A5075734722 @default.
- W1967701561 hasBestOaLocation W19677015611 @default.
- W1967701561 hasConcept C111368507 @default.
- W1967701561 hasConcept C12267149 @default.
- W1967701561 hasConcept C127313418 @default.
- W1967701561 hasConcept C154945302 @default.
- W1967701561 hasConcept C169258074 @default.
- W1967701561 hasConcept C185933670 @default.
- W1967701561 hasConcept C18903297 @default.
- W1967701561 hasConcept C2993018843 @default.
- W1967701561 hasConcept C30354325 @default.
- W1967701561 hasConcept C39432304 @default.
- W1967701561 hasConcept C41008148 @default.
- W1967701561 hasConcept C50254455 @default.
- W1967701561 hasConcept C555745239 @default.
- W1967701561 hasConcept C555944384 @default.
- W1967701561 hasConcept C62649853 @default.
- W1967701561 hasConcept C76155785 @default.
- W1967701561 hasConcept C83042747 @default.
- W1967701561 hasConcept C86803240 @default.
- W1967701561 hasConcept C98083399 @default.
- W1967701561 hasConceptScore W1967701561C111368507 @default.
- W1967701561 hasConceptScore W1967701561C12267149 @default.
- W1967701561 hasConceptScore W1967701561C127313418 @default.
- W1967701561 hasConceptScore W1967701561C154945302 @default.
- W1967701561 hasConceptScore W1967701561C169258074 @default.
- W1967701561 hasConceptScore W1967701561C185933670 @default.
- W1967701561 hasConceptScore W1967701561C18903297 @default.
- W1967701561 hasConceptScore W1967701561C2993018843 @default.
- W1967701561 hasConceptScore W1967701561C30354325 @default.
- W1967701561 hasConceptScore W1967701561C39432304 @default.
- W1967701561 hasConceptScore W1967701561C41008148 @default.
- W1967701561 hasConceptScore W1967701561C50254455 @default.
- W1967701561 hasConceptScore W1967701561C555745239 @default.
- W1967701561 hasConceptScore W1967701561C555944384 @default.
- W1967701561 hasConceptScore W1967701561C62649853 @default.
- W1967701561 hasConceptScore W1967701561C76155785 @default.
- W1967701561 hasConceptScore W1967701561C83042747 @default.
- W1967701561 hasConceptScore W1967701561C86803240 @default.
- W1967701561 hasConceptScore W1967701561C98083399 @default.