Matches in SemOpenAlex for { <https://semopenalex.org/work/W1967806355> ?p ?o ?g. }
- W1967806355 endingPage "188" @default.
- W1967806355 startingPage "175" @default.
- W1967806355 abstract "In recent years, a considerable amount of work has been devoted to generalizing linear discriminant analysis to overcome its incompetence for high-dimensional classification (Witten and Tibshirani, 2011, Cai and Liu, 2011, Mai et al., 2012 and Fan et al., 2012). In this paper, we develop high-dimensional sparse semiparametric discriminant analysis (SSDA) that generalizes the normal-theory discriminant analysis in two ways: it relaxes the Gaussian assumptions and can handle ultra-high dimensional classification problems. If the underlying Bayes rule is sparse, SSDA can estimate the Bayes rule and select the true features simultaneously with overwhelming probability, as long as the logarithm of dimension grows slower than the cube root of sample size. Simulated and real examples are used to demonstrate the finite sample performance of SSDA. At the core of the theory is a new exponential concentration bound for semiparametric Gaussian copulas, which is of independent interest." @default.
- W1967806355 created "2016-06-24" @default.
- W1967806355 creator A5062736741 @default.
- W1967806355 creator A5079252402 @default.
- W1967806355 date "2015-03-01" @default.
- W1967806355 modified "2023-10-14" @default.
- W1967806355 title "Sparse semiparametric discriminant analysis" @default.
- W1967806355 cites W1768730780 @default.
- W1967806355 cites W1915008591 @default.
- W1967806355 cites W1965125844 @default.
- W1967806355 cites W1973682096 @default.
- W1967806355 cites W2020925091 @default.
- W1967806355 cites W2027717478 @default.
- W1967806355 cites W2033612661 @default.
- W1967806355 cites W2035633352 @default.
- W1967806355 cites W2046365501 @default.
- W1967806355 cites W2049701820 @default.
- W1967806355 cites W2051605894 @default.
- W1967806355 cites W2053150383 @default.
- W1967806355 cites W2063978378 @default.
- W1967806355 cites W2074682976 @default.
- W1967806355 cites W2078237481 @default.
- W1967806355 cites W2087160118 @default.
- W1967806355 cites W2092058109 @default.
- W1967806355 cites W2111118673 @default.
- W1967806355 cites W2116581043 @default.
- W1967806355 cites W2122825543 @default.
- W1967806355 cites W2127300249 @default.
- W1967806355 cites W2133264613 @default.
- W1967806355 cites W2134902673 @default.
- W1967806355 cites W2138550913 @default.
- W1967806355 cites W2143423446 @default.
- W1967806355 cites W2150002853 @default.
- W1967806355 cites W2162366839 @default.
- W1967806355 cites W3098834468 @default.
- W1967806355 cites W3100817920 @default.
- W1967806355 cites W3103354362 @default.
- W1967806355 cites W3104038823 @default.
- W1967806355 doi "https://doi.org/10.1016/j.jmva.2014.12.009" @default.
- W1967806355 hasPublicationYear "2015" @default.
- W1967806355 type Work @default.
- W1967806355 sameAs 1967806355 @default.
- W1967806355 citedByCount "18" @default.
- W1967806355 countsByYear W19678063552015 @default.
- W1967806355 countsByYear W19678063552016 @default.
- W1967806355 countsByYear W19678063552018 @default.
- W1967806355 countsByYear W19678063552019 @default.
- W1967806355 countsByYear W19678063552020 @default.
- W1967806355 countsByYear W19678063552022 @default.
- W1967806355 countsByYear W19678063552023 @default.
- W1967806355 crossrefType "journal-article" @default.
- W1967806355 hasAuthorship W1967806355A5062736741 @default.
- W1967806355 hasAuthorship W1967806355A5079252402 @default.
- W1967806355 hasBestOaLocation W19678063551 @default.
- W1967806355 hasConcept C104500394 @default.
- W1967806355 hasConcept C105795698 @default.
- W1967806355 hasConcept C107673813 @default.
- W1967806355 hasConcept C114614502 @default.
- W1967806355 hasConcept C121332964 @default.
- W1967806355 hasConcept C12267149 @default.
- W1967806355 hasConcept C134306372 @default.
- W1967806355 hasConcept C151376022 @default.
- W1967806355 hasConcept C153180895 @default.
- W1967806355 hasConcept C154945302 @default.
- W1967806355 hasConcept C163716315 @default.
- W1967806355 hasConcept C207201462 @default.
- W1967806355 hasConcept C28826006 @default.
- W1967806355 hasConcept C33676613 @default.
- W1967806355 hasConcept C33923547 @default.
- W1967806355 hasConcept C39927690 @default.
- W1967806355 hasConcept C41008148 @default.
- W1967806355 hasConcept C52001869 @default.
- W1967806355 hasConcept C62520636 @default.
- W1967806355 hasConcept C69738355 @default.
- W1967806355 hasConcept C78397625 @default.
- W1967806355 hasConceptScore W1967806355C104500394 @default.
- W1967806355 hasConceptScore W1967806355C105795698 @default.
- W1967806355 hasConceptScore W1967806355C107673813 @default.
- W1967806355 hasConceptScore W1967806355C114614502 @default.
- W1967806355 hasConceptScore W1967806355C121332964 @default.
- W1967806355 hasConceptScore W1967806355C12267149 @default.
- W1967806355 hasConceptScore W1967806355C134306372 @default.
- W1967806355 hasConceptScore W1967806355C151376022 @default.
- W1967806355 hasConceptScore W1967806355C153180895 @default.
- W1967806355 hasConceptScore W1967806355C154945302 @default.
- W1967806355 hasConceptScore W1967806355C163716315 @default.
- W1967806355 hasConceptScore W1967806355C207201462 @default.
- W1967806355 hasConceptScore W1967806355C28826006 @default.
- W1967806355 hasConceptScore W1967806355C33676613 @default.
- W1967806355 hasConceptScore W1967806355C33923547 @default.
- W1967806355 hasConceptScore W1967806355C39927690 @default.
- W1967806355 hasConceptScore W1967806355C41008148 @default.
- W1967806355 hasConceptScore W1967806355C52001869 @default.
- W1967806355 hasConceptScore W1967806355C62520636 @default.
- W1967806355 hasConceptScore W1967806355C69738355 @default.
- W1967806355 hasConceptScore W1967806355C78397625 @default.
- W1967806355 hasFunder F4320337345 @default.
- W1967806355 hasLocation W19678063551 @default.