Matches in SemOpenAlex for { <https://semopenalex.org/work/W1967826708> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W1967826708 abstract "This paper presents Microgrid (MG) optimization using Genetic Algorithm. The MG model is based on renewable energy sources (wind turbine) and gas generator. The algorithm objective is determine the optimal size of combined wind and gas generator to satisfy a given Key Performance Indices (KPIs). The selected KPIs describe both dynamic and static performance of MG. The KPIs describing the dynamic performance includes Total Harmonic Distortion (THD) and power factor (PF) in presence of disturbance and load variation. The static KPIs includes power shortage, initial cost, running cost and CO 2 emission. The two KPIs groups (dynamic and static) have different time frame. The dynamic KPIs are examined by applying load disturbance to MG and observe its effect over few seconds (according to MG average time constant). The static KPIs are examined by applying load and power generation profiles during one full year period. Hence, it is not feasible to combine both static and dynamic simulation using one model. Accordingly, to allow one optimization process based on static and dynamic KPIs, two simulation models have been created with two separate simulation environments. The static simulation uses simplified efficiency model of the power components presented in MG and the system is subjected to load and wind profiles to evaluate the static KPIs. The dynamic simulation uses detailed dynamic model with load disturbance. The optimization process utilizes a single fitness function which combines the dynamic and static PKIs with weighting factors. Results of optimization are presented and the KPIs of the optimized MG is provided." @default.
- W1967826708 created "2016-06-24" @default.
- W1967826708 creator A5005845425 @default.
- W1967826708 creator A5056698828 @default.
- W1967826708 date "2015-08-01" @default.
- W1967826708 modified "2023-09-30" @default.
- W1967826708 title "Micro grid renewables dynamic and static performance optimization using genetic algorithm" @default.
- W1967826708 cites W1979140622 @default.
- W1967826708 cites W1983203535 @default.
- W1967826708 cites W1984079082 @default.
- W1967826708 cites W2003017943 @default.
- W1967826708 cites W2059760484 @default.
- W1967826708 cites W2062734251 @default.
- W1967826708 cites W2069592350 @default.
- W1967826708 cites W2071689632 @default.
- W1967826708 cites W2107835500 @default.
- W1967826708 cites W2135137862 @default.
- W1967826708 cites W2138785717 @default.
- W1967826708 cites W2153172796 @default.
- W1967826708 cites W2164641348 @default.
- W1967826708 cites W2296221482 @default.
- W1967826708 cites W2315796062 @default.
- W1967826708 doi "https://doi.org/10.1109/sege.2015.7324596" @default.
- W1967826708 hasPublicationYear "2015" @default.
- W1967826708 type Work @default.
- W1967826708 sameAs 1967826708 @default.
- W1967826708 citedByCount "5" @default.
- W1967826708 countsByYear W19678267082017 @default.
- W1967826708 countsByYear W19678267082019 @default.
- W1967826708 countsByYear W19678267082021 @default.
- W1967826708 countsByYear W19678267082022 @default.
- W1967826708 crossrefType "proceedings-article" @default.
- W1967826708 hasAuthorship W1967826708A5005845425 @default.
- W1967826708 hasAuthorship W1967826708A5056698828 @default.
- W1967826708 hasConcept C119599485 @default.
- W1967826708 hasConcept C127413603 @default.
- W1967826708 hasConcept C135510737 @default.
- W1967826708 hasConcept C154945302 @default.
- W1967826708 hasConcept C162324750 @default.
- W1967826708 hasConcept C187736073 @default.
- W1967826708 hasConcept C2775924081 @default.
- W1967826708 hasConcept C41008148 @default.
- W1967826708 hasConcept C44154836 @default.
- W1967826708 hasConcept C47446073 @default.
- W1967826708 hasConcept C78600449 @default.
- W1967826708 hasConceptScore W1967826708C119599485 @default.
- W1967826708 hasConceptScore W1967826708C127413603 @default.
- W1967826708 hasConceptScore W1967826708C135510737 @default.
- W1967826708 hasConceptScore W1967826708C154945302 @default.
- W1967826708 hasConceptScore W1967826708C162324750 @default.
- W1967826708 hasConceptScore W1967826708C187736073 @default.
- W1967826708 hasConceptScore W1967826708C2775924081 @default.
- W1967826708 hasConceptScore W1967826708C41008148 @default.
- W1967826708 hasConceptScore W1967826708C44154836 @default.
- W1967826708 hasConceptScore W1967826708C47446073 @default.
- W1967826708 hasConceptScore W1967826708C78600449 @default.
- W1967826708 hasLocation W19678267081 @default.
- W1967826708 hasOpenAccess W1967826708 @default.
- W1967826708 hasPrimaryLocation W19678267081 @default.
- W1967826708 hasRelatedWork W1524420521 @default.
- W1967826708 hasRelatedWork W1633373207 @default.
- W1967826708 hasRelatedWork W1993783338 @default.
- W1967826708 hasRelatedWork W2080392394 @default.
- W1967826708 hasRelatedWork W2086740463 @default.
- W1967826708 hasRelatedWork W2092978599 @default.
- W1967826708 hasRelatedWork W2160149965 @default.
- W1967826708 hasRelatedWork W2190034430 @default.
- W1967826708 hasRelatedWork W2333845226 @default.
- W1967826708 hasRelatedWork W2368270231 @default.
- W1967826708 hasRelatedWork W2474254817 @default.
- W1967826708 hasRelatedWork W2501611220 @default.
- W1967826708 hasRelatedWork W2511584172 @default.
- W1967826708 hasRelatedWork W2553175376 @default.
- W1967826708 hasRelatedWork W2560510338 @default.
- W1967826708 hasRelatedWork W2736676561 @default.
- W1967826708 hasRelatedWork W2912436871 @default.
- W1967826708 hasRelatedWork W2950443291 @default.
- W1967826708 hasRelatedWork W2992964838 @default.
- W1967826708 hasRelatedWork W3198439016 @default.
- W1967826708 isParatext "false" @default.
- W1967826708 isRetracted "false" @default.
- W1967826708 magId "1967826708" @default.
- W1967826708 workType "article" @default.